【題目】如圖,在△ABC 中,AB=AC,∠B=50°,P 是邊 AB 上的一個(gè)動(dòng)點(diǎn)(不與頂點(diǎn) A 重合),則∠BPC 的度數(shù)可能是

A. 50° B. 80° C. 100° D. 130°

【答案】C

【解析】

根據(jù)等邊對(duì)等角可得BACB50°,再根據(jù)三角形內(nèi)角和計(jì)算出A 的度數(shù),然后根據(jù)三角形內(nèi)角與外角的關(guān)系可得BPCA , 再因?yàn)?/span>B50°,所以BPC180°50°130°進(jìn)而可得答案.

ABACB50°,

∴∠BACB50°

∴∠A180°50°×280°,

∵∠BPCAACP

∴∠BPCA,

∴∠BPC80°.

∵∠B50°

∴∠BPC180°50°130°

BPC的值可能是100°.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,∠ABC=45°,點(diǎn)DBC邊上一動(dòng)點(diǎn)(與點(diǎn)B,C不重合),點(diǎn)E與點(diǎn)D關(guān)于直線(xiàn)AC對(duì)稱(chēng),連結(jié)AE,過(guò)點(diǎn)BBFED的延長(zhǎng)線(xiàn)于點(diǎn)F.

(1)依題意補(bǔ)全圖形;

(2)當(dāng)AE=BD時(shí),用等式表示線(xiàn)段DEBF之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王老師給學(xué)生出了一道題:

(2a+b)(2ab)+2(2ab)2+(2ab216a2b)÷(2a)的值,其中a,b=﹣1,同學(xué)們看了題目后發(fā)表不同的看法.小張說(shuō):條件b=﹣1是多余的.”小李說(shuō):“不給這個(gè)條件,就不能求出結(jié)果,所以不多余.”

(1)你認(rèn)為他們誰(shuí)說(shuō)的有道理?為什么?

(2)xm等于本題計(jì)算的結(jié)果,試求x2m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
①畫(huà)出△ABC向左平移5個(gè)單位長(zhǎng)度后得到的△A1B1C1
②請(qǐng)畫(huà)出△ABC關(guān)于原點(diǎn)對(duì)稱(chēng)的△A2B2C2 , 并寫(xiě)出點(diǎn)A2、B2、C2坐標(biāo);
③請(qǐng)畫(huà)出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后△A3B3C3 , 并寫(xiě)出點(diǎn)A3、B3、C3坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在每個(gè)小正方形邊長(zhǎng)為1的方格紙中,ADC的頂點(diǎn)都在方格紙格點(diǎn)上,將ABC向左平移1格.再向上平移1格,

1)在圖中畫(huà)出平移后的ABC;

2)畫(huà)出AB邊上的高CE

3)過(guò)點(diǎn)A畫(huà)BC的平行線(xiàn);

4)在圖中,若BCQ的面積等于BCA的面積.則圖中滿(mǎn)足條件且異于點(diǎn)A的個(gè)點(diǎn)Q共有_____個(gè).(注:格點(diǎn)指網(wǎng)格線(xiàn)的交點(diǎn))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)以點(diǎn)O為圓心的同心圓,

圖1 圖2
(1)如圖1,大圓的弦AB交小圓于C,D兩點(diǎn),試判斷AC與BD的數(shù)量關(guān)系,并說(shuō)明理由.
(2)如圖2,將大圓的弦AB向下平移使其為小圓的切線(xiàn),切點(diǎn)為C,證明:AC=BC.
(3)在(2)的基礎(chǔ)上,已知AB=20cm,直接寫(xiě)出圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).

(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于4cm2
(2)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ中PQ的長(zhǎng)度等于5cm?
(3)在(1)中,當(dāng)P,Q出發(fā)幾秒時(shí),△PBQ有最大面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)Pab),若點(diǎn)P′的坐標(biāo)為(a+kbka+b)(其中k為常數(shù),且k≠0),則稱(chēng)點(diǎn)P′為點(diǎn)P“k屬派生點(diǎn)

如:P14)的“2屬派生點(diǎn)為P′1+2×4,2×1+4),即P′96);

1)點(diǎn)P-1,3)的“2屬派生點(diǎn)”P(pán)′的坐標(biāo)為______

2)若點(diǎn)P“3屬派生點(diǎn)”P(pán)′的坐標(biāo)為(-1,3),則點(diǎn)P的坐標(biāo)為______

3)若點(diǎn)Px軸的正半軸上,點(diǎn)P“k屬派生點(diǎn)為點(diǎn)P′,線(xiàn)段PP′的長(zhǎng)度等于線(xiàn)段OP的長(zhǎng)度,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰直角△ABC,點(diǎn)P是斜邊BC上一點(diǎn)(不與B,C重合),PE是△ABP的外接圓⊙O的直徑

(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值

查看答案和解析>>

同步練習(xí)冊(cè)答案