【題目】已知:拋物線y= (x-1)2-3 .
(1)寫出拋物線的開口方向、對稱軸;
(2)函數(shù)y有最大值還是最小值?并求出這個最大(。┲担
(3)設拋物線與y軸的交點為P,與x軸的交點為Q,求直線PQ的函數(shù)解析式.
【答案】
(1)
解:拋物線y= (x-1)2-3,
∵a= >0,
∴拋物線的開口向上,對稱軸為直線x=1;
(2)
解:∵a= >0,
∴函數(shù)y有最小值,最小值為-3;
(3)
解:令x=0,則y= (0-1)2-3=- ,所以,點P的坐標為(0,- ),令y=0,則 (x-1)2-3=0,
解得x1=-1,x2=3,所以,點Q的坐標為(-1,0)或(3,0),當點P(0,- ),Q(-1,0)時,設直線PQ的解析式為y=kx+b,則, ,解得 ,所以直線PQ的解析式為y=- x- ,
當P(0,- ),Q(3,0)時,設直線PQ的解析式為y=mx+n,
則 ,解得 ,所以,直線PQ的解析式為y= x- ,綜上所述,直線PQ的解析式為y=- x- 或y= x- .
【解析】(1)根據(jù)二次函數(shù)的性質,寫出開口方向與對稱軸即可;(2)根據(jù)a是正數(shù)確定有最小值,再根據(jù)函數(shù)解析式寫出最小值;(3)分別求出點P、Q的坐標,再根據(jù)待定系數(shù)法求函數(shù)解析式解答.
【考點精析】利用二次函數(shù)的性質和二次函數(shù)的最值對題目進行判斷即可得到答案,需要熟知增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減;如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a.
科目:初中數(shù)學 來源: 題型:
【題目】下列多項式中能用平方差公式分解的有( 。
①﹣a2﹣b2;②9x2﹣4y2;③x2﹣4y2;④(﹣m)2﹣(﹣n)2;
⑤﹣144a2+121b2;⑥﹣m2+2n2.
A. 1個 B. 2個 C. 3個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學改革學生的學習模式,變“老師要學生學習”為“學生自主學習”,培養(yǎng)了學生自主學習的能力.小華與小明同學就“你最喜歡哪種學習方式”隨機調查了他們周圍的一些同學,根據(jù)收集到的數(shù)據(jù)繪制了以下兩個不完整的統(tǒng)計圖(如圖).
請根據(jù)上面兩個不完整的統(tǒng)計圖回答以下4個問題:
(1)這次抽樣調查中,共調查了_____名學生.
(2)補全條形統(tǒng)計圖中的缺項.
(3)在扇形統(tǒng)計圖中,選擇教師傳授的占_____%,選擇小組合作學習的占_____%.
(4)根據(jù)調查結果,估算該校1800名學生中大約有_____人選擇小組合作學習模式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八(2)班組織了一次經典誦讀比賽,甲、乙兩隊各10人的比賽成績如下表(10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;
(2)計算乙隊的平均成績和方差;
(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一點A從數(shù)軸上表示+2的點開始移動,第一次先向左移動1個單位,再向右移動2個單位;第二次先向左移動3個單位,再向右移動4個單位;第三次先向左移動5個單位,再向右移動6個單位……
(1)寫出第一次移動后這個點在數(shù)軸上表示的數(shù)為 ;
(2)寫出第二次移動后這個點在數(shù)軸上表示的數(shù)為 ;
(3)寫出第五次移動后這個點在數(shù)軸上表示的數(shù)為 ;
(4)寫出第次移動結果這個點在數(shù)軸上表示的數(shù)為 ;
(5)如果第次移動后這個點在數(shù)軸上表示的數(shù)為56,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為2的菱形ABCD中,∠A=60°,點M是AD邊的中點,連接MC,將菱形ABCD翻折,使點A落在線段CM上的點E處,折痕交AB于點N,則線段EC的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結論正確的個數(shù)是( 。
①AE=BF;②AE⊥BF;③sin∠BQP= ;④S四邊形ECFG=2S△BGE .
A.4
B.3
C.2
D.1
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com