【題目】已知:拋物線y= (x-1)2-3
(1)寫出拋物線的開口方向、對稱軸;
(2)函數(shù)y有最大值還是最小值?并求出這個最大(。┲担
(3)設拋物線與y軸的交點為P,與x軸的交點為Q,求直線PQ的函數(shù)解析式.

【答案】
(1)

解:拋物線y= (x-1)2-3,

a= >0

∴拋物線的開口向上,對稱軸為直線x=1;


(2)

解:∵a= >0

∴函數(shù)y有最小值,最小值為-3;


(3)

解:令x=0,y= (0-1)2-3=- ,所以,點P的坐標為(0,- ),令y=0,則 (x-1)2-3=0,

解得x1=-1,x2=3,所以,點Q的坐標為(-1,0)或(3,0),當點P(0,- ),Q(-1,0)時,設直線PQ的解析式為y=kx+b,則, ,解得 ,所以直線PQ的解析式為y=- x- ,

當P(0,- ),Q(3,0)時,設直線PQ的解析式為y=mx+n,

,解得 ,所以,直線PQ的解析式為y= x- ,綜上所述,直線PQ的解析式為y=- x- y= x- .


【解析】(1)根據(jù)二次函數(shù)的性質,寫出開口方向與對稱軸即可;(2)根據(jù)a是正數(shù)確定有最小值,再根據(jù)函數(shù)解析式寫出最小值;(3)分別求出點P、Q的坐標,再根據(jù)待定系數(shù)法求函數(shù)解析式解答.
【考點精析】利用二次函數(shù)的性質和二次函數(shù)的最值對題目進行判斷即可得到答案,需要熟知增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減;如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列多項式中能用平方差公式分解的有( 。

﹣a2﹣b29x2﹣4y2x2﹣4y2;(﹣m)2﹣(﹣n)2;

﹣144a2+121b2;m2+2n2

A. 1 B. 2 C. 3 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學改革學生的學習模式,變“老師要學生學習”為“學生自主學習”,培養(yǎng)了學生自主學習的能力.小華與小明同學就“你最喜歡哪種學習方式”隨機調查了他們周圍的一些同學,根據(jù)收集到的數(shù)據(jù)繪制了以下兩個不完整的統(tǒng)計圖(如圖).

請根據(jù)上面兩個不完整的統(tǒng)計圖回答以下4個問題:

(1)這次抽樣調查中,共調查了_____名學生.

(2)補全條形統(tǒng)計圖中的缺項.

(3)在扇形統(tǒng)計圖中,選擇教師傳授的占_____%,選擇小組合作學習的占_____%.

(4)根據(jù)調查結果,估算該校1800名學生中大約有_____人選擇小組合作學習模式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】八(2)班組織了一次經典誦讀比賽,甲、乙兩隊各10人的比賽成績如下表(10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;

(2)計算乙隊的平均成績和方差;

(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一點A從數(shù)軸上表示+2的點開始移動,第一次先向左移動1個單位,再向右移動2個單位;第二次先向左移動3個單位,再向右移動4個單位;第三次先向左移動5個單位,再向右移動6個單位……

(1)寫出第一次移動后這個點在數(shù)軸上表示的數(shù)為

(2)寫出第二次移動后這個點在數(shù)軸上表示的數(shù)為 ;

(3)寫出第五次移動后這個點在數(shù)軸上表示的數(shù)為

4寫出第次移動結果這個點在數(shù)軸上表示的數(shù)為 ;

(5)如果第次移動后這個點在數(shù)軸上表示的數(shù)為56,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 中, , ,將 繞點O沿逆時針方向旋轉 得到 ,連結 ,求證:四邊形 是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列算式
=±3;② =9;③26÷23=4;④ =2016;⑤a+a=a2
運算結果正確的概率是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的菱形ABCD中,∠A=60°,點M是AD邊的中點,連接MC,將菱形ABCD翻折,使點A落在線段CM上的點E處,折痕交AB于點N,則線段EC的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結論正確的個數(shù)是( 。
①AE=BF;②AE⊥BF;③sin∠BQP= ;④S四邊形ECFG=2SBGE

A.4
B.3
C.2
D.1

查看答案和解析>>

同步練習冊答案