【題目】如圖1,小敏利用課余時(shí)間制作了一個(gè)臉盆架,圖2是它的截面圖,垂直放置的臉盆與架子的交點(diǎn)為A,B,AB=40cm,臉盆的最低點(diǎn)C到AB的距離為10cm,則該臉盆的半徑為cm.

【答案】25
【解析】解;如圖,設(shè)圓的圓心為O,連接OA,OC,OC與AB交于點(diǎn)D,設(shè)⊙O半徑為R,
∵OC⊥AB,
∴AD=DB= AB=20,∠ADO=90°,
在RT△AOD中,∵OA2=OD2+AD2 ,
∴R2=202+(R﹣10)2 ,
∴R=25.
故答案為25.

設(shè)圓的圓心為O,連接OA,OC,OC與AB交于點(diǎn)D,設(shè)⊙O半徑為R,在RT△AOD中利用勾股定理即可解決問(wèn)題.本題考查垂徑定理、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,利用勾股定理列方程解決問(wèn)題,屬于中考?碱}型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(
A.“蒙上眼睛射擊正中靶心”是必然事件
B.“拋一枚硬幣,正面朝上的概率為 ”說(shuō)明擲一枚質(zhì)地均勻的硬幣10次,必有5次正面朝上
C.“拋一枚均勻的正方體骰子,朝上的點(diǎn)數(shù)是3的概率為 ”表示隨著拋擲次數(shù)的增加,“拋出朝上的點(diǎn)數(shù)是3”這一事件發(fā)生的頻率穩(wěn)定在 附近
D.為了解某種節(jié)能燈的使用壽命,應(yīng)選擇全面調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,若∠A=∠D,CD=3,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弦BD=BA,BE⊥DC交DC的延長(zhǎng)線于點(diǎn)E.

(1)求證:∠1=∠BAD;
(2)求證:BE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,∠B=30°,CE平分∠ACB交⊙O于E,交AB于點(diǎn)D,連接AE,則SADE:SCDB的值等于( 。

A.1:
B.1:
C.1:2
D.2:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,2,3分別以△ABC的AB和AC為邊向△ABC外作正三角形(等邊三角形)、正四邊形(正方形)、正五邊形,BE和CD相交于點(diǎn)O.

(1)在圖1中,求證:△ABE≌△ADC.
(2)由(1)證得△ABE≌△ADC,由此可推得在圖1中∠BOC=120°,請(qǐng)你探索在圖2中,∠BOC的度數(shù),并說(shuō)明理由或?qū)懗鲎C明過(guò)程.
(3)填空:在上述(1)(2)的基礎(chǔ)上可得在圖3中∠BOC=(填寫(xiě)度數(shù)).
(4)由此推廣到一般情形(如圖4),分別以△ABC的AB和AC為邊向△ABC外作正n邊形,BE和CD仍相交于點(diǎn)O,猜想得∠BOC的度數(shù)為(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算 ①3x2﹣3=2x(用配方法解)
②4(x﹣1)2﹣9(3﹣2x)2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出:如圖(1),在邊長(zhǎng)為a(a>2)的正方形ABCD各邊上分別截取AE=BF=CG=DH=1,當(dāng)∠AFQ=∠BGM=∠CHN=∠DEP=45°時(shí),求S正方形MNPQ . 問(wèn)題探究:分別延長(zhǎng)QE,MF,NG,PH,交FA,GB,HC,ED的延長(zhǎng)線于點(diǎn)R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四個(gè)全等的等腰直角三角形(如圖(2)).
(1)若將上述四個(gè)等腰三角形拼成一個(gè)新的正方形(無(wú)縫隙,不重疊),則新正方形的邊長(zhǎng)為;這個(gè)新正方形與原正方形ABCD的面積有何關(guān)系;(填“>”,“=”“或<”);通過(guò)上述的分析,可以發(fā)現(xiàn)S正方形MNPQ與SFSB之間的關(guān)系是
(2)問(wèn)題解決:求S正方形MNPQ
(3)拓展應(yīng)用:如圖(3),在等邊△ABC各邊上分別截取AD=BE=CF=1,再分別過(guò)點(diǎn)D,E,F(xiàn)作BC,AC,AB的垂線,得到等邊△PQR,求SPQR . (請(qǐng)仿照上述探究的方法,在圖3的基礎(chǔ)上,先畫(huà)出圖形,再解決問(wèn)題).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知A(﹣4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點(diǎn)C(0,2),過(guò)點(diǎn)C作圓的切線交x軸于點(diǎn)D.

(1)求過(guò)A,B,C三點(diǎn)的拋物線的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)設(shè)平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn),問(wèn):是否存在以線段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案