如圖,AB是半圓O的直徑,點(diǎn)P在BA的延長線上,PD切⊙O于點(diǎn)C,BD⊥PD,垂足為D,連接BC.

(1)求證:BC平分∠PDB;

(2)求證:BC2=AB•BD;

(3)若PA=6,PC=6,求BD的長.

 

【答案】

解:(1)證明:連接OC,

∵PD為圓O的切線,∴OC⊥PD。

∵BD⊥PD,∴OC∥BD�!唷螼CB=∠CBD。

∵OC=OB,∴∠OCB=∠OBC。

∴∠CBD=∠OBC,即BC平分∠PBD。

(2)證明:連接AC,

∵AB為圓O的直徑,∴∠ACB=90°。

∵∠ACB=∠CDB=90°,∠ABC=∠CBD,∴△ABC∽△CBD。

,即BC2=AB•BD。

(3)∵PC為圓O的切線,PAB為割線,∴PC2=PA•PB,即72=6PB,解得:PB=12。

∴AB=PB-PA=12-6=6�!郞C=3,PO=PA+AO=9。

∵△OCP∽△BDP,∴,即。

∴BD=4。

【解析】(1)連接OC,由PD為圓O的切線,由切線的性質(zhì)得到OC垂直于PD,由BD垂直于PD,得到OC與BD平行,利用兩直線平行得到一對內(nèi)錯(cuò)角相等,再由OC=OB,利用等邊對等角得到一對角相等,等量代換即可得證。

(2)連接AC,由AB為圓O的直徑,利用直徑所對的圓周角為直角得到△ABC為直角三角形,根據(jù)一對直角相等,以及(1)的結(jié)論得到一對角相等,確定出△ABC與△BCD相似,由相似得比例,變形即可得證。

(3)由切割線定理列出關(guān)系式,將PA,PC的長代入求出PB的長,由PB﹣PA求出AB的長,確定出圓的半徑,由OC與BD平行得到△PCO與△DPB相似,由相似得比例,將OC,OP,以及PB的長代入即可求出BD的長。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,AC是弦,點(diǎn)P從點(diǎn)B開始沿BA邊向點(diǎn)A以1cm/s的速度移動,若AB長為10cm,點(diǎn)O到AC的距離為4cm.
(1)求弦AC的長;
(2)問經(jīng)過幾秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是半圓O的直徑,OD是半徑,BM切半圓于點(diǎn)B,OC與弦AD平行交BM于點(diǎn)C.
(1)求證:CD是半圓O的切線;
(2)若AB的長為4,點(diǎn)D在半圓O上運(yùn)動,當(dāng)AD的長為1時(shí),求點(diǎn)A到直線CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,點(diǎn)D是半圓上一動點(diǎn),AB=10,AC=8,當(dāng)△ACD是等腰三角形時(shí),點(diǎn)D到AB的距離是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是半圓O的直徑,以O(shè)A為直徑的半圓O′與弦AC交于點(diǎn)D,O′E∥AC,并交OC于點(diǎn)E,則下列結(jié)論:①S△O′OE=
1
2
S△AOC2;②點(diǎn)D時(shí)AC的中點(diǎn);③
AC
=2AD;④四邊形O′DEO是菱形.其中正確的結(jié)論是( �。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是半圓O的直徑,過點(diǎn)O作弦AD的垂線交半圓O于點(diǎn)E,F(xiàn)為垂足,交AC于點(diǎn)C使∠BED=∠C.請判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案
闂佺ǹ楠忛幏锟� 闂傚倸鍋婇幏锟�