【題目】如圖,已知拋物線經(jīng)過點A(4,0),B(0,4),C(6,6).
(1)求拋物線的表達式;
(2)證明:四邊形AOBC的兩條對角線互相垂直;
(3)在四邊形AOBC的內部能否截出面積最大的DEFG?(頂點D,E,F(xiàn),G分別在線段AO,OB,BC,CA上,且不與四邊形AOBC的頂點重合)若能,求出DEFG的最大面積,并求出此時點D的坐標;若不能,請說明理由.
【答案】(1)、y=x2﹣x+4;(2)、證明過程見解析;(3)、最大值為12,此時D點坐標為(2,0)
【解析】
試題(1)、根據(jù)拋物線經(jīng)過點A(4,0),B(0,4),C(6,6),利用待定系數(shù)法,求出拋物線的表達式即可;(2)、利用兩點間的距離公式分別計算出OA=4,OB=4,CB=2,CA=2,則OA=OB,CA=CB,根據(jù)線段垂直平分線定理的逆定理得到OC垂直平分AB,所以四邊形AOBC的兩條對角線互相垂直;(3)、如圖2,利用兩點間的距離公式分別計算出AB=4,OC=6,設D(t,0),根據(jù)平行四邊形的性質四邊形DEFG為平行四邊形得到EF∥DG,EF=DG,再由OC垂直平分AB得到△OBC與△OAC關于OC對稱,則可判斷EF和DG為對應線段,所以四邊形DEFG為矩形,DG∥OC,則DE∥AB,于是可判斷△ODE∽△OAB,利用相似比得DE=t,接著證明△ADG∽△AOC,利用相似比得DG=(4﹣t),所以矩形DEFG的面積=DEDG=t(4﹣t)=﹣3t2+12t,然后根據(jù)二次函數(shù)的性質求平行四邊形DEFG的面積的最大值,從而得到此時D點坐標.
試題解析:(1)、設該拋物線的解析式為y=ax2+bx+c, 根據(jù)題意得,解得,
∴拋物線的表達式為y=x2﹣x+4;
(2)、如圖1,連結AB、OC, ∵A(4,0),B(0,4),C(6,6),
∴OA=4,OB=4,CB=2,CA=2,
∴OA=OB,CA=CB, ∴OC垂直平分AB, 即四邊形AOBC的兩條對角線互相垂直;
(3)、能. 如圖2,AB=4,OC=6,設D(t,0),
∵四邊形DEFG為平行四邊形, ∴EF∥DG,EF=DG, ∵OC垂直平分AB,
∴△OBC與△OAC關于OC對稱, ∴EF和DG為對應線段, ∴四邊形DEFG為矩形,DG∥OC,
∴DE∥AB,∴△ODE∽△OAB,∴=,即=,解得DE=t, ∵DG∥OC,
∴△ADG∽△AOC,∴=,即=,解得DG=(4﹣t),
∴矩形DEFG的面積=DEDG=t(4﹣t)=﹣3t2+12t=﹣3(t﹣2)2+12,
當t=2時,平行四邊形DEFG的面積最大,最大值為12,此時D點坐標為(2,0).
科目:初中數(shù)學 來源: 題型:
【題目】織金縣某中學300名學生參加植樹活動,要求每人植4~7棵,活動結束后隨機抽查了若干名學生每人的植樹量,并分為四種類型,A:4棵;B:5棵;C:6棵;D:7棵.將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2).
回答下列問題:
(1)在這次調查中D類型有多少名學生?
(2)寫出被調查學生每人植樹量的眾數(shù)、中位數(shù);
(3)求被調查學生每人植樹量的平均數(shù),并估計這300名學生共植樹多少棵?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地.設先發(fā)車輛行駛的時間為xh,兩車之間的距離為ykm,圖中的折線表示y與x之間的函數(shù)關系,根據(jù)圖象解決以下問題:
(1)慢車的速度為_____km/h,快車的速度為_____km/h;
(2)解釋圖中點C的實際意義并求出點C的坐標;
(3)求當x為多少時,兩車之間的距離為500km.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AD∥BC,AB⊥BC,AB=3.點E為射線 BC上一個動點,連接AE,將△ABE沿AE折疊,點B落在點B′處,過點B′作AD的垂線,分別交AD,BC于點M,N.當點B′為線段MN的三等分點時,BE的長為__________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】文化是一個國家、一個民族的靈魂,近年來,央視推出《中國詩詞大會》、《中國成語大會》、《朗讀者》、《經(jīng)曲詠流傳》等一系列文化欄目.為了解學生對這些欄目的喜愛情況,某學校組織學生會成員隨機抽取了部分學生進行調查,被調查的學生必須從《經(jīng)曲詠流傳》(記為A)、《中國詩詞大會》(記為B)、《中國成語大會》(記為C)、《朗讀者》(記為D)中選擇自己最喜愛的一個欄目,也可以寫出一個自己喜愛的其他文化欄目(記為E).根據(jù)調查結果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中信息解答下列問題:
(1)在這項調查中,共調查了多少名學生?
(2)將條形統(tǒng)計圖補充完整,并求出扇形統(tǒng)計圖中“B”所在扇形圓心角的度數(shù);
(3)若選擇“E”的學生中有2名女生,其余為男生,現(xiàn)從選擇“E”的學生中隨機選出兩名學生參加座談,請用列表法或畫樹狀圖的方法求出剛好選到同性別學生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E,F分別為邊AB,CD的中點,BD⊥AD.
(1)求證:四邊形BEDF是菱形;
(2)作AG⊥CB于G,若AD=1,AG=2,求sinC的值;
(3)若(2)中的四邊形AGCD為一不可卷折的板材,問該板材能否通過一直徑為1.8的圓洞門?請計算說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個全等的等腰直角三角形按如圖方式放置在平面直角坐標系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數(shù)y=的圖象經(jīng)過點B.
(1)求k的值.
(2)把△OCD沿射線OB移動,當點D落在y=圖象上時,求點D經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是長為10m,傾斜角為30°的自動扶梯,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結果保留整數(shù)).(參考數(shù)據(jù):sin65°=0.90,tan65°=2.14)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,小正方形格子的邊長為1,Rt△ABC三個頂點都在格點上,請解答下列問題:
(1)寫出A,C兩點的坐標;
(2)畫出△ABC關于原點O的中心對稱圖形△A1B1C1;
(3)畫出△ABC繞原點O順時針旋轉90°后得到的△A2B2C2,并直接寫出點C旋轉至C2經(jīng)過的路徑長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com