【題目】如圖,等邊ABC的邊長為10,點(diǎn)M是邊AB上一動(dòng)點(diǎn),將等邊ABC沿過點(diǎn)M的直線折疊,該直線與直線AC交于點(diǎn)N,使點(diǎn)A落在直線BC上的點(diǎn)D處,且BD:DC=1:4,折痕為MN,則AN的長為_____

【答案】7或

【解析】解:①當(dāng)點(diǎn)A落在如圖1所示的位置時(shí),

∵△ACB是等邊三角形,

∴∠A=B=C=MDN=60°,

∵∠MDC=B+∠BMD,B=MDN,

∴∠BMD=NDC,

∴△BMD∽△CDN.

∴得

DN=AN,

∴得

BD:DC=1:4,BC=10,

DB=2,CD=8,

設(shè)AN=x,則CN=10﹣x,

,

DM=BM=,

BM+DM=30,

+=10,

解得x=7,

AN=7;

②當(dāng)ACB的延長線上時(shí),如圖2,

與①同理可得△BMD∽△CDN.

∴得,

BD:DC=1:4,BC=10,

DB=CD=,

設(shè)AN=x,則CN=x﹣10,

,

DM=,BM=,

BM+DM=10,

+=10,

解得: x=

AN=

故答案為:7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年九月是開學(xué)季,大多數(shù)學(xué)生會(huì)購買若干筆記本滿足日常學(xué)習(xí)需要,校外某文具店老板開學(xué)前某日去批發(fā)市場進(jìn)貨,購進(jìn)甲乙丙三種不同款式的筆記本,已知甲款筆記本的進(jìn)價(jià)為2/本,乙款筆記本的進(jìn)價(jià)為4/本,丙款筆記本的進(jìn)價(jià)為6/本,經(jīng)過調(diào)研發(fā)現(xiàn),甲款筆記本、乙款筆記本和丙款筆記本的零售價(jià)分別定為4/本、6/本和10/本時(shí),每天可分別售出甲款筆記本30本、乙款筆記本50本和丙款筆記本20本,如果將乙款筆記本的零售價(jià)提高元(),甲款筆記本和丙款筆記本的零售價(jià)均保持不變,那么乙款筆記本每天的銷售量將下降,丙款筆記本每天的銷售量將上升,甲款筆記本每天的銷量仍保持不變.

1)若,調(diào)價(jià)后每天銷售三款筆記本共可獲利多少元?

2)若調(diào)價(jià)后每天銷售三款筆記本共可獲利260元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對幫扶的貧困家庭贈(zèng)送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價(jià)格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.

(1)求甲、乙兩種樹苗每棵的價(jià)格各是多少元?

(2)在實(shí)際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時(shí),甲種樹苗的售價(jià)比第一次購買時(shí)降低了10%,乙種樹苗的售價(jià)不變,如果再次購買兩種樹苗的總費(fèi)用不超過1500元,那么他們最多可購買多少棵乙種樹苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的部分圖象如圖,圖象過點(diǎn),對稱軸為直線,下列結(jié)論:①;④當(dāng)時(shí), 的值隨值的增大而增大;⑤當(dāng)函數(shù)值時(shí),自變量的取值范圍是.其中正確的結(jié)論有__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,每個(gè)小方格都是邊長為的正方形,的頂點(diǎn)均在格點(diǎn)上,點(diǎn)的坐標(biāo)是.

1)將先向右平移個(gè)單位長度,再向下平移個(gè)單位長度,在圖中畫出第二次平移后的圖形△.

2)如果將看成是由經(jīng)過一次平移得到的,則這一次平移的方向?yàn)開________,平移的距離為___________.

3)請畫出關(guān)于坐標(biāo)原點(diǎn)的中心對稱圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△BDE都是等邊三角形,點(diǎn)A,B,D在一條直線上。給出4個(gè)結(jié)論:①AE=CD;②AB⊥FB;③∠AFC=60°;④△BGH是等邊三角形。其中正確的是( )

A.①,②,③B.①,②,④

C.①,③,④D.②,③,④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E是邊AB上的任意一點(diǎn)(不與點(diǎn)A,B重合),連接DE,作點(diǎn)A關(guān)于直線DE的對稱點(diǎn)為F,連接EF并延長交BC于點(diǎn)G

1)依題意補(bǔ)全圖形,連接DG,求∠EDG的度數(shù);

2)過點(diǎn)EEHDEDG的延長線于點(diǎn)H,連接BH.線段BHAE有怎樣的數(shù)量關(guān)系,請寫出結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)工程隊(duì)共同參與一項(xiàng)筑路工程,甲隊(duì)單獨(dú)施工3個(gè)月,這時(shí)增加了乙隊(duì),兩隊(duì)又共同工作了2個(gè)月,總工程全部完成,已知甲隊(duì)單獨(dú)完成全部工程比乙隊(duì)單獨(dú)完成全部工程多用2個(gè)月,設(shè)甲隊(duì)單獨(dú)完成全部工程需個(gè)月,則根據(jù)題意可列方程中錯(cuò)誤的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),矩形OACB的頂點(diǎn)AB分別在軸和軸上,已知OA=5,OB=3,點(diǎn)D的坐標(biāo)是(01),點(diǎn)P從點(diǎn)B出發(fā)以每秒1個(gè)單位的速度沿折線BCA的方向運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),運(yùn)動(dòng)停止,設(shè)運(yùn)動(dòng)的時(shí)間為秒.

1)點(diǎn)P運(yùn)動(dòng)到與點(diǎn)C重合時(shí),求直線DP的函數(shù)解析式;

2)求△OPD的面積S關(guān)于的函數(shù)解析式,并寫出對應(yīng)的取值范圍;

3)點(diǎn)P在運(yùn)動(dòng)過程中,是否存在某些位置使△ADP是不以DP為底邊的等腰三角形,若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案