【題目】如圖,以O(shè)(0,0)、A(2,0)為頂點作正△OAP1 , 以點P1和線段P1A的中點B為頂點作正△P1BP2 , 再以點P2和線段P2B的中點C為頂點作△P2CP3 , …,如此繼續(xù)下去,則第六個正三角形中,不在第五個正三角形上的頂點P6的坐標(biāo)是

【答案】( ,
【解析】解:由題意可得,每一個正三角形的邊長都是上個三角形的邊長的 ,則第六個正三角形的邊長是 , 故頂點P6的橫坐標(biāo)是 ,P5縱坐標(biāo)是 =
P6的縱坐標(biāo)為 ,
故答案為:( , ).
根據(jù)O(0,0),A(2,0)為頂點作△OAP1 , 再以P1和P1A的中B為頂點作△P1BP2 , 再P2和P2B的中C為頂點作△P2CP3 , …,如此繼續(xù)下去,結(jié)合圖形求出點P6的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BE是圓O的直徑,A在EB的延長線上,AP為圓O的切線,P為切點,弦PD垂直于BE于點C.
(1)求證:∠AOD=∠APC;
(2)若OC:CB=1:2,AB=6,求圓O的半徑及tan∠APB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)求出△ABC的面積;

(2)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1;

(3)寫出點A1,B1,C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天放學(xué)后,小紅步行,小麗騎自行車沿同一條筆直的馬路到圖書館看書,圖中線段OA、BC分別表示小紅、小麗離開學(xué)校的路程s(米)與小紅所用的時間t(分鐘)的函數(shù)關(guān)系,根據(jù)圖象解答下列問題:

(1)小麗比小紅遲出發(fā)   分鐘,小紅步行的速度是   /分鐘;(直接寫出結(jié)果)

(2)兩人在路上相距不超過200米的時間有多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一次函數(shù)的圖象分別與x軸、y軸相交于點A、B,且與經(jīng)過點C(2,0)的一次函數(shù)y=kx+b的圖象相交于點D,點D的橫坐標(biāo)為4,直線CD與y軸相交于點E.

(1)直線CD的函數(shù)表達(dá)式為   ;(直接寫出結(jié)果)

(2)點Q為線段DE上的一個動點,連接BQ.

若直線BQ將BDE的面積分為1:2兩部分,試求點Q的坐標(biāo);

BQD沿著直線BQ翻折,使得點D恰好落在直線AB下方的坐標(biāo)軸上,請直接寫出點Q的坐標(biāo): .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線經(jīng)過原點和點,點的坐標(biāo)為.

(1)求直線所對應(yīng)的函數(shù)解析式;

(2)當(dāng)P在線段OA上時,設(shè)點橫坐標(biāo)為,三角形的面積為,寫出關(guān)于的函數(shù)解析式,并指出自變量的取值范圍;

(3)當(dāng)P在射線OA上時,在坐標(biāo)軸上有一點,使正整數(shù)),請直接寫出點的坐標(biāo)(本小題只要寫出結(jié)果,不需要寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家計劃從廠家采購空調(diào)和冰箱兩種產(chǎn)品共20臺,空調(diào)的采購單價y1(元/臺)與采購數(shù)量x1(臺)滿足y1=﹣20x1+1500(0<x1≤20,x1為整數(shù));冰箱的采購單價y2(元/臺)與采購數(shù)量x2(臺)滿足y2=﹣10x2+1300(0<x2≤20,x2為整數(shù)).
(1)經(jīng)商家與廠家協(xié)商,采購空調(diào)的數(shù)量不少于冰箱數(shù)量的 ,且空調(diào)采購單價不低于1200元,問該商家共有幾種進(jìn)貨方案?
(2)該商家分別以1760元/臺和1700元/臺的銷售單價售出空調(diào)和冰箱,且全部售完.在(1)的條件下,問采購空調(diào)多少臺時總利潤最大?并求最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行了文明在我身邊攝影比賽.已知每幅參賽作品成績記為x(60x100).校方從600幅參賽作品中隨機抽取了部分參賽作品,統(tǒng)計了它們的成績,并繪制了如下不完整的統(tǒng)計圖表.

分?jǐn)?shù)段

頻數(shù)

頻率

60x<70

18

0.36

70x<80

17

c

80x<90

a

0.24

90x<100

b

0.06

合計

1

根據(jù)以上信息解答下列問題:

(1)統(tǒng)計表中c的值為________;樣本成績的中位數(shù)落在分?jǐn)?shù)段________中;

(2)補全頻數(shù)直方圖;

(3)80分以上(80)的作品將被組織展評,試估計全校被展評的作品數(shù)量是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側(cè)面和2個正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)

A方法:剪6個側(cè)面; B方法:剪4個側(cè)面和5個底面。

現(xiàn)有19張硬紙板,裁剪時張用A方法,其余用B方法。

1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個數(shù);

2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個盒子?

查看答案和解析>>

同步練習(xí)冊答案