【題目】如圖,AB∥CD,以點A為圓心,小于AC的長為半徑畫弧,分別交AB、AC于E、F兩點;再分別以E、F為圓心,大于的長為半徑畫弧,兩弧交于點P,作射線AP,交CD于點M.若∠CMA=25°,則∠C的度數(shù)為( 。
A.100°B.110°C.120°D.130°
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點A和點B分別在y軸正半軸和x軸負半軸上,且OA=OB,點C和點D分別在第四象限和第一象限,且OC⊥OD,OC=OD,點D的坐標為(m,n),且滿足+|n﹣2|=0.
(1)求點D的坐標;(2)求∠AKO的度數(shù);(3)如圖2,點P,Q分別在y軸正半軸和x軸負半軸上,且OP=OQ,直線ON⊥BP交AB于點N,MN⊥AQ交BP的延長線于點M,判斷ON,MN,BM的數(shù)量關系并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,連接OD.
(1)過點C作射線CF交BA的延長線于點F,且使得∠ECF=∠AOD;(要求尺規(guī)作圖,不寫作法)
(2)求證:CF是⊙O的切線;
(3)若OE:AE=1:2,且AF=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,東營市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有_______人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為_______°;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對校園安全知識達到“了解”程度的3個女生和2個男生中隨機抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校初三(2)班課題研究小組對本校初三段全體同學的體育達標(體育成績60分以上,含60分)情況進行調(diào)查,他們對本班50名同學的體育達標情況和其余班級同學的體育達標情況分別進行調(diào)查,數(shù)據(jù)統(tǒng)計如下:
根據(jù)以上統(tǒng)計圖,請解答下面問題:
(1)初三(2)班同學體育達標率和初三段其余班級同學達標率各是多少?
(2)如果全段同學的體育達標率不低于90%,則全段同學人數(shù)不超過多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 分別平分的外角、內(nèi)角、外角.以下結(jié)論: ①;②;③平分;④; ⑤其中正確的結(jié)論是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,(圖1,圖2),四邊形ABCD是邊長為4的正方形,點E在線段BC上,∠AEF=90°,且EF交正方形外角平分線CP于點F,交BC的延長線于點N, FN⊥BC.
(1)若點E是BC的中點(如圖1),AE與EF相等嗎?
(2)點E在BC間運動時(如圖2),設BE=x,△ECF的面積為y。
①求y與x的函數(shù)關系式;
②當x取何值時,y有最大值,并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中∠BAC=120°,AB=AC,點M、N在邊BC上,且∠MAN=60°若BM=2,CN=3,則MN的長為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點P是第一象限角平分線上的一點,OP=,直角三角板的直角頂點與點P重合,把直角三角板繞點P轉(zhuǎn)動,另兩條直角邊所在直線與x軸正半軸、y軸正半軸分別交于A、B兩點
(1)求點P的坐標
(2)若點A的坐標為(0,m),點B的坐標為(n,0),試判斷m、n有什么數(shù)量關系,并說明理由
(3)連接AB,△ABO的面積是否存在最大值,若存在,求出最大值,若不存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com