【題目】同時(shí)擲兩枚普通的骰子,出現(xiàn)數(shù)字之積為奇數(shù)出現(xiàn)數(shù)字之積為偶數(shù)的概率分別是________,

【答案】;

【解析】

利用列表法先求出出現(xiàn)兩數(shù)之積為奇數(shù)的有9種情況,根據(jù)公式求出出現(xiàn)兩個(gè)點(diǎn)數(shù)之積為奇數(shù)的概率,再根據(jù)各小組概率之和等于1求出兩個(gè)點(diǎn)數(shù)之積為偶數(shù)的概率.

解:根據(jù)題意列表得:

1,6

2,6

3,6

4,6

5,6

6,6

1,5

2,5

3,5

4,5

5,5

6,5

1,4

2,4

3,4

4,4

5,4

6,4

1,3

2,3

3,3

4,3

5,3

6,3

1,2

2,2

3,2

4,2

5,2span>)

6,2

1,1

2,1

3,1

4,1

5,1

6,1


∴共有36種情況,出現(xiàn)兩數(shù)之積為奇數(shù)的有9種情況,
∴出現(xiàn)兩數(shù)之積為奇數(shù)的概率是=9÷36=
∴兩個(gè)點(diǎn)數(shù)之積為偶數(shù)的概率是1-=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)yax2+bx+4x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,拋物線(xiàn)的頂點(diǎn)為點(diǎn)D,且3OC=4OB,對(duì)稱(chēng)軸為直線(xiàn)x,點(diǎn)E,連接CE交對(duì)稱(chēng)軸于點(diǎn)F,連接AF交拋物線(xiàn)于點(diǎn)G

(1)求拋物線(xiàn)的解析式和直線(xiàn)CE的解析式;

(2)如圖,過(guò)EEPx軸交拋物線(xiàn)于點(diǎn)P,點(diǎn)Q是線(xiàn)段BC上一動(dòng)點(diǎn),當(dāng)QG+QB最小時(shí),線(xiàn)段MN在線(xiàn)段CE上移動(dòng),點(diǎn)M在點(diǎn)N上方,且MN,請(qǐng)求出四邊形PQMN周長(zhǎng)最小時(shí)點(diǎn)N的橫坐標(biāo);

(3)如圖③,BC與對(duì)稱(chēng)軸交于點(diǎn)R,連接BD,點(diǎn)S是線(xiàn)段BD上一動(dòng)點(diǎn),將△DRS沿直線(xiàn)RS折疊至△DRS,是否存在點(diǎn)S使得△DRS與△BRS重疊部分的圖形是直角三角形?若存在,請(qǐng)求出BS的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):tan∠DBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,一次函數(shù)yx+4x軸、y軸分別交于A,B兩點(diǎn).Px軸上的動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為n

(1)當(dāng)△BPO∽△ABO時(shí),求點(diǎn)P的坐標(biāo);

(2)如圖2,過(guò)點(diǎn)P的直線(xiàn)y=2x+b與直線(xiàn)AB相交于C,求當(dāng)△PAC的面積為20時(shí),點(diǎn)P的坐標(biāo);

(3)如圖3,直接寫(xiě)出當(dāng)以A,B,P為頂點(diǎn)的三角形為等腰三角形時(shí),點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,水壩的橫截面是梯形ABCDABC=37°,壩頂DC=3m,背水坡AD的坡度i(即tanDAB)為1:0.5,壩底AB=14m

(1)求壩高;

(2)如圖2,為了提高堤壩的防洪抗洪能力,防汛指揮部決定在背水坡將壩頂和壩底間時(shí)拓寬加固,使得AE=2DF,EFBF,求DF的長(zhǎng).(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC 中,D BC 邊的中點(diǎn),E、F 分別在 AD 及其延長(zhǎng)線(xiàn)上,CEBF,連接BE、CF.

(1)求證:BDF ≌△CDE;

(2)若 DE =BC,試判斷四邊形 BFCE 是怎樣的四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為1的正方形ABCD中,點(diǎn)E是對(duì)角線(xiàn)BD上的一點(diǎn),且BEBC,點(diǎn)PEC上,PMBDM,PNBCN,則PM+PN_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋中有3個(gè)分別標(biāo)有數(shù)字-1、1、2的小球,它們除標(biāo)的數(shù)字不同外無(wú)其他區(qū)別.

(1)隨機(jī)地從口袋中取出一小球,求取出的小球上標(biāo)的數(shù)字為負(fù)數(shù)的概率;

(2)隨機(jī)地從口袋中取出一小球,放回后再取出第二個(gè)小球,求兩次取出的數(shù)字的和等于0的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18的條件下生長(zhǎng)最快的新品種.圖是某天恒溫系統(tǒng)從開(kāi)啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y()隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段是雙曲線(xiàn)的一部分.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:

(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18的時(shí)間有多少小時(shí)?

(2)求k的值;

(3)當(dāng)x=16時(shí),大棚內(nèi)的溫度約為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓 O 的半徑為 1,過(guò)點(diǎn) A(2,0)的直線(xiàn)與圓 O 相切于點(diǎn) B, y 軸相交于點(diǎn) C.

(1) AB 的長(zhǎng);

(2)求直線(xiàn) AB 的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案