【題目】(2017湖北省十堰市,第24題,10分)已知O為直線MN上一點(diǎn),OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D為OB的中點(diǎn),DE⊥DC交MN于E.
(1)如圖1,若點(diǎn)B在OP上,則:
①AC OE(填“<”,“=”或“>”);
②線段CA、CO、CD滿足的等量關(guān)系式是 ;
(2)將圖1中的等腰Rt△ABO繞O點(diǎn)順時(shí)針旋轉(zhuǎn)α(0°<α<45°),如圖2,那么(1)中的結(jié)論②是否成立?請說明理由;
(3)將圖1中的等腰Rt△ABO繞O點(diǎn)順時(shí)針旋轉(zhuǎn)α(45°<α<90°),請你在圖3中畫出圖形,并直接寫出線段CA、CO、CD滿足的等量關(guān)系式 .
【答案】(1)①=;②AC2+CO2=CD2;(2)不成立;(3)OC﹣CA=CD.
【解析】
試題(1)①如圖1,證明AC=OC和OC=OE可得結(jié)論;
②根據(jù)勾股定理可得:AC2+CO2=CD2;
(2)如圖2,(1)中的結(jié)論②不成立,作輔助線,構(gòu)建全等三角形,證明A、D、O、C四點(diǎn)共圓,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再證明△ACO≌△EOF,得OE=AC,AO=EF,根據(jù)勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最長邊為斜邊可得結(jié)論;
(3)如圖3,連接AD,則AD=OD證明△ACD≌△OED,根據(jù)△CDE是等腰直角三角形,得CE2=2CD2,等量代換可得結(jié)論(OC﹣OE)2=(OC﹣AC)2=2CD2,開方后是:OC﹣AC=CD.
試題解析:解:(1)①AC=OE.理由如下:
如圖1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°.∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°.∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC.連接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四邊形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;
②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;
故答案為AC2+CO2=CD2;
(2)如圖2,(1)中的結(jié)論②不成立.理由是:
連接AD,延長CD交OP于F,連接EF.∵AB=AO,D為OB的中點(diǎn),∴AD⊥OB,∴∠ADO=90°.∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO.∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四點(diǎn)共圓,∴∠ACD=∠AOB.同理得:∠EFO=∠EDO,∴∠EFO=∠AOC.∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF.∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2.Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的結(jié)論②不成立;
(3)如圖3,結(jié)論:OC﹣CA=CD.理由是:
連接AD,則AD=OD,同理:∠ADC=∠EDO.∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC.∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD.故答案為OC﹣AC=CD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某反比例函數(shù)圖象的一支經(jīng)過點(diǎn)A(2,3)和點(diǎn)B(點(diǎn)B在點(diǎn)A的右側(cè)),作BC⊥y軸,垂足為點(diǎn)C,連結(jié)AB,AC.
(1)求該反比例函數(shù)的解析式;
(2)若△ABC的面積為6,求直線AB的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點(diǎn)A測得大樹頂端B的仰角是45°,沿斜坡走米到達(dá)斜坡上點(diǎn)D,在此處測得樹頂端點(diǎn)B的仰角為31°,且斜坡AF的坡比為1:2(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60).
(1)求小明從點(diǎn)A走到點(diǎn)D的過程中,他上升的高度;
(2)大樹BC的高度約為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班學(xué)生做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),給出的某一結(jié)果出現(xiàn)的頻率折線圖,則符合這一結(jié)果的實(shí)驗(yàn)可能是( )
A.拋一枚硬幣,出現(xiàn)正面朝上
B.從標(biāo)有1,2,3,4,5,6的六張卡片中任抽一張,出現(xiàn)偶數(shù)
C.一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃
D.從一個(gè)裝有6個(gè)紅球和3個(gè)黑球的袋子中任取一球,取到的是黑球
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在圓中,直徑,,直線,相交于點(diǎn).
(1)求的度數(shù);
(2)如圖2,與交于點(diǎn),請補(bǔ)全圖形并求的度數(shù);
(3)如圖3,弦與弦不相交,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(-4,0)、B(1,0),與y軸交于點(diǎn)C(0,-4),P是直線AC下方拋物線上的點(diǎn),若△ACP的面積為6,則tan∠AOP的值為_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,對稱軸為直線x=-1,點(diǎn)B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正確的結(jié)論有( 。﹤(gè).
A. 3B. 4C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題
如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°,求證:ADBC=APBP.
(2)探究
如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=θ時(shí),上述結(jié)論是否依然成立?說明理由.
(3)應(yīng)用
請利用(1)(2)獲得的經(jīng)驗(yàn)解決問題:如圖3,在△ABD中,AB=6,AD=BD=5,點(diǎn)P以每秒1個(gè)單位長度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動,且滿足∠DPC=∠A,設(shè)點(diǎn)P的運(yùn)動時(shí)間為t(秒),當(dāng)以D為圓心,以DC為半徑的圓與AB相切時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘游輪在A處測得北偏東45°的方向上有一燈塔B.游輪以20海里/時(shí)的速度向正東方向航行2小時(shí)到達(dá)C處,此時(shí)測得燈塔B在C處北偏東15°的方向上,求A處與燈塔B相距多少海里?(結(jié)果精確到1海里,參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com