【題目】如圖,A,B,C三點(diǎn)在數(shù)軸上,點(diǎn)A表示的數(shù)為-10,點(diǎn)B表示的數(shù)為14,點(diǎn)C到點(diǎn)A和點(diǎn)B之間的距離相等.
(1)求A,B兩點(diǎn)之間的距離;
(2)求C點(diǎn)對(duì)應(yīng)的數(shù);
(3)甲、乙分別從A,B兩點(diǎn)同時(shí)相向運(yùn)動(dòng),甲的速度是1個(gè)單位長度/s,乙的速度是2個(gè)單位長度/s,求相遇點(diǎn)D對(duì)應(yīng)的數(shù).
【答案】(1)A,B兩點(diǎn)之間的距離為24個(gè)單位長度;(2)C點(diǎn)對(duì)應(yīng)的數(shù)是2;(3)相遇點(diǎn)D對(duì)應(yīng)的數(shù)為-2
【解析】
(1)用點(diǎn)B表示的數(shù)減去點(diǎn)A表示的數(shù),計(jì)算即可解得;
(2)設(shè)C點(diǎn)對(duì)應(yīng)的數(shù)是x,然后列出方程求解即可;
(3)設(shè)相遇的時(shí)間是t秒,根據(jù)相遇問題列出方程,求解得到t的值,然后根據(jù)點(diǎn)A表示的數(shù)列式計(jì)算即可解得結(jié)果。
解:(1)14-(-10)=24
所以A,B兩點(diǎn)之間的距離為24個(gè)單位長度.
(2)設(shè)C點(diǎn)對(duì)應(yīng)的數(shù)是x.
則x-(-10)=14-x
解得:x=2
所以C點(diǎn)對(duì)應(yīng)的數(shù)是2;
(3)設(shè)相遇的時(shí)間是t秒,
則t+2t=24
解得:t=8
所以甲走了8個(gè)單位長度到D點(diǎn).
所以相遇點(diǎn)D對(duì)應(yīng)的數(shù)為-2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,過點(diǎn)B的直線交x軸于C,且△ABC面積為10.
(1)求點(diǎn)C的坐標(biāo)及直線BC的解析式;
(2)如圖1,設(shè)點(diǎn)F為線段AB中點(diǎn),點(diǎn)G為y軸上一動(dòng)點(diǎn),連接FG,以FG為邊向FG右側(cè)作正方形FGQP,在G點(diǎn)的運(yùn)動(dòng)過程中,當(dāng)頂點(diǎn)Q落在直線BC上時(shí),求點(diǎn)G的坐標(biāo);
(3)如圖2,若M為線段BC上一點(diǎn),且滿足S△AMB=S△AOB,點(diǎn)E為直線AM上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)D,使以點(diǎn)D,E,B,C為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)O是邊BC的中點(diǎn),連接DO并延長,交AB延長線于點(diǎn)E,連接BD,EC.
(1)求證:四邊形BECD是平行四邊形;
(2)當(dāng)∠A=50°,∠BOD=100°時(shí),判斷四邊形BECD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0)的圖象如圖所示,下列結(jié)論:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正確的結(jié)論有______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AB是⊙O的直徑,點(diǎn)C在⊙O上,CD是⊙O的切線,AD⊥CD于點(diǎn)D.E是AB延長線上一點(diǎn),CE交⊙O于點(diǎn)F,連結(jié)OC,AC.
(1)求證:AC平分∠DAO;
(2)若∠DAO=105°,∠E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=10,sinA=,CD為AB邊上的中線,以點(diǎn)B為圓心,r為半徑作⊙B.如果⊙B與中線CD有且只有一個(gè)公共點(diǎn),那么⊙B的半徑r的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,E是對(duì)角線AC上的一點(diǎn),EB=ED且∠ABE=∠ADE.
(1)求證:四邊形ABCD是正方形;
(2)延長DE交BC于點(diǎn)F,交AB的延長線于點(diǎn)G,求證:EFAG=BCBE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)全體同學(xué)參加了某項(xiàng)捐款活動(dòng),隨機(jī)抽查了部分同學(xué)捐款的情況統(tǒng)計(jì)如圖所示
(1)本次共抽查學(xué)生____人,并將條形圖補(bǔ)充完整;
(2)捐款金額的眾數(shù)是_____,平均數(shù)是_____;
(3)在八年級(jí)700名學(xué)生中,捐款20元及以上(含20元)的學(xué)生估計(jì)有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com