【題目】已如兩個(gè)全等的等腰△ABC、△DEF,其中∠ACB=∠DFE=90°,E為AB中點(diǎn),△DEF可繞頂點(diǎn)E旋轉(zhuǎn),線段DE,EF分別交線段CA,CB(或它們所在的直線)于M、N.
(1)如圖1,當(dāng)線段EF經(jīng)過△ABC的頂點(diǎn)時(shí),點(diǎn)N與點(diǎn)C重合,線段DE交AC于M,已知AC=BC=5,則MC= ;
(2)如果2,當(dāng)線段EF與線段BC邊交于N點(diǎn),線段DE與線段AC交于M點(diǎn),連MN,EC,請(qǐng)?zhí)骄?/span>AM,MN,CN之間的等量關(guān)系,并說明理由;
(3)如圖3,當(dāng)線段EF與BC延長線交于N點(diǎn),線段DE與線段AC交于M點(diǎn),連MN,EC,則(2)中AM,MN,CN之間的等量關(guān)系還成立嗎?請(qǐng)說明理由.
【答案】(1);(2)見解析;(3)見解析
【解析】
(1)根據(jù)AC=BC,E為AB中點(diǎn),得出CE⊥AB,∠ACE=∠BCE=∠ACB=45°,∠A=∠ACE=45°,AE=CE,再根據(jù)DF=EF,∠DFE=90°,得出∠FED=45°,∠FED=∠AEC,即可得出AM=MC;
(2)先在AM截取AH,使得AH=CN,連接EH,根據(jù)AE=CE,∠A=∠BCE=45°證出△AHE≌△CNE,HE=NE,∠AEH=∠CEN,∠HEM=∠AEC﹣∠AEH﹣MEC=∠AEC﹣∠CEN﹣MEC=∠AEC﹣∠MEF=90°﹣45°=45°,∠HEM=∠NEM=45°然后證出△HEM≌△NEM,HM=MN,最后根據(jù)AM=AH+HM=CN+MN即可得出答案;
(3)先在CB上截取CH=AM,根據(jù)SAS證得△AEM≌△CEH,得出EM=EH,∠AEM=∠CEH,AM=CH,再根據(jù)∠MEN和∠AEC的度數(shù),得出∠CEH+∠CEN=∠HEN=45°,再在△EMN和△EHN中,根據(jù)SAS證得△EMN≌△EHN,得出MN=HN,即可求出答案.
解:(1)∵AC=BC,E為AB中點(diǎn),
∴CE⊥AB,∠ACE=∠BCE=∠ACB=45°,
∴∠A=∠ACE=45°,
∴∠AEC=90°,AE=CE,
∵DF=EF,∠DFE=90°,
∴∠FED=45°,
∴∠FED=∠AEC,
又∵AE=CE,
∴AM=MC=AC=,
故答案為:;
(2)AM=MN+CN,理由如下:
如圖2,在AM截取AH,使得AH=CN,連接EH,
由(1)知AE=CE,∠A=∠BCE=45°
∵在△AHE與△CNE中:
,
∴△AHE≌△CNE(SAS),
∴HE=NE,∠AEH=∠CEN,
∴∠HEM=∠AEC﹣∠AEH﹣MEC=∠AEC﹣∠CEN﹣MEC=∠AEC﹣∠MEF=90°﹣45°=45°,
∴∠HEM=∠NEM=45
∵在△HEM與△NEM中:
,
∴△HEM≌△NEM(SAS),
∴HM=MN,
∴AM=AH+HM=CN+MN,
即AM=MN+CN;
(3)猜得:MN=AM+CN,理由如下:
如圖3,在CB上截取CH=AM,連接EH,
在△AEM和△CEH中,
,
∴△AEM≌△CEH(SAS),
∴EM=EH,∠AEM=∠CEH,AM=CH,
∵∠MEN=45°,∠AEC=90°,
∴∠AEM+∠CEN=45°,
∴∠CEH+∠CEN=∠HEN=45°,
∵∠MEN=∠HEN,
在△EMN和△EHN中,
,
∴△EMN≌△EHN(SAS),
∴MN=HN,
∴MN=CH+CN,
∴MN=AM+CN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是的平分線,點(diǎn)是射線上一點(diǎn),點(diǎn)C、D分別在射線、上,連接PC、PD.
(1)發(fā)現(xiàn)問題
如圖①,當(dāng),時(shí),則PC與PD的數(shù)量關(guān)系是________.
(2)探究問題
如圖②,點(diǎn)C、D在射線OA、OB上滑動(dòng),且∠AOB=90°,∠OCP+∠ODP=180°,當(dāng)時(shí),PC與PD在(1)中的數(shù)量關(guān)系還成立嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A旋轉(zhuǎn)至矩形AB′C′D′位置.此時(shí)AC′的中點(diǎn)恰好與點(diǎn)D重合,AB′交CD于點(diǎn)E,若AB=3,則△AEC的面積為( )
A.3
B.
C.2
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一矩形紙片OABC放在直角坐標(biāo)系中,O為原點(diǎn),C在x軸上,OA=6,OC=10.
(Ⅰ)如圖①,在OA上取一點(diǎn)E,將△EOC沿EC折疊,使點(diǎn)O落在AB邊上的D點(diǎn),求E點(diǎn)的坐標(biāo);
(Ⅱ)如圖②,在OA、OC邊上選取適當(dāng)?shù)狞c(diǎn)E′、F,將△E′OF沿E′F折疊,使O點(diǎn)落在AB邊上D′點(diǎn),過D′作D′G∥OA交E′F于T點(diǎn),交OC于G點(diǎn),設(shè)T的坐標(biāo)為(x,y),求y與x之間的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,若OG=2 ,求△D′TF的面積.(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=3,AC=4,BC=5,P 為邊 BC 上一動(dòng)點(diǎn),PE⊥AB 于 E,PF⊥AC于 F,M 為 EF 中點(diǎn),則 AM 的最小值為( )
A.1B.1.3C.1.2D.1.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ACDE 是證明勾股定理時(shí)用到的一個(gè)圖形,a 、b 、c 是 RtABC和 RtBED 的邊長,已知,這時(shí)我們把關(guān)于 x 的形如二次方程稱為“勾系一元二次方程”.
請(qǐng)解決下列問題:
(1)寫出一個(gè)“勾系一元二次方程”;
(2)求證:關(guān)于 x 的“勾系一元二次方程”,必有實(shí)數(shù)根;
(3)若 x 1是“勾系一元二次方程” 的一個(gè)根,且四邊形 ACDE 的周長是6,求ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近日天氣晴朗,某集團(tuán)公司準(zhǔn)備組織全體員工外出踏青.決定租用甲、乙、丙三種型號(hào)的巴士出行,甲型巴士每輛車的乘載量是乙型巴士的3倍,丙型巴士每輛可乘坐36人.現(xiàn)在旅游公司有甲、乙、丙型巴士若干輛,預(yù)計(jì)給該集團(tuán)公司安排申型、丙型巴士共計(jì)8輛,其余員工安排乙型巴士,每輛巴士均滿載,這樣乘坐乙型巴士和丙型巴士的員工共296人.臨行前,突然有若干人因特殊原因請(qǐng)假,這樣一來剛好可以減少租用一輛乙型包士,且有一輛乙型巴士多出兩個(gè)空位,這樣甲、乙兩種型號(hào)巴士共計(jì)裝載178人;則該集團(tuán)公司共有________名員工.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知射線CB∥OA,∠C=∠OAB,
(1)求證:AB∥OC;
(2)如圖2,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF.
①當(dāng)∠C=110°時(shí),求∠EOB的度數(shù).
②若平行移動(dòng)AB,那么∠OBC :∠OFC的值是否隨之發(fā)生變化?若變化,找出變
化規(guī)律;若不變,求出這個(gè)比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面內(nèi)的直線有相交和平行兩種位置關(guān)系.
(1)如圖(a),已知AB∥CD,求證:∠BPD=∠B+∠D.
(2)如圖(b),已知AB∥CD,求證:∠BOD=∠P+∠D.
(3)根據(jù)圖(c),試判斷∠BPD,∠B,∠D,∠BQD之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com