【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護(hù)區(qū)開展了尋找古樹活動(dòng).如圖,在一個(gè)坡度(或坡比)=1:2.4的山坡AB上發(fā)現(xiàn)有一棵占樹CD.測(cè)得古樹底端C到山腳點(diǎn)A的距離AC=26米,在距山腳點(diǎn)A水平距離6米的點(diǎn)E處,測(cè)得古樹頂端D的仰角∠AED=48°(古樹CD與山坡AB的剖面、點(diǎn)E在同一平面上,古樹CD與直線AE垂直),則古樹CD的高度約為( )(參考數(shù)據(jù):°≈0.73cos8°≈0.67,tan48°≈1.11

A.17.0B.21.9C.23.3D.33.3

【答案】C

【解析】

如圖,根據(jù)已知條件得到=12.4=,設(shè)CF=5k,AF=12k,根據(jù)勾股定理得到AC==13k=26,求得AF=10,CF=24,得到EF=6+24=30,根據(jù)三角函數(shù)的定義即可得到結(jié)論.

解:如圖,∵=12.4=

∴設(shè)CF=5k,AF=12k

.AC==13k=26,解得.k=2

AF=10,CF=24,

AE=6,

EF=6+24=30,

∴∠DEF=48°

tan48°==1.11

DF=33.3

CD=33.3-10=23.3,答:古樹CD的高度約為23.3米,故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的布袋中裝有標(biāo)著數(shù)字234,54個(gè)小球,這4個(gè)小球的材質(zhì)、大小和形狀完全相同,現(xiàn)從中隨機(jī)摸出兩個(gè)小球,這兩個(gè)小球上的數(shù)字之積大于9的概率為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】PQN中,若∠PQαα≤25°),則稱PQN差角三角形”,且∠P Q差角”.

1)已知ABC是等邊三角形,判斷ABC是否為差角三角形,并說明理由;

2)在ABC中,∠C90°50°≤B≤70°,判斷ABC是否為差角三角形,若是,請(qǐng)寫出所有的差角并說明理由;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在抗擊新冠肺炎疫情期間,市場(chǎng)上防護(hù)口罩出現(xiàn)熱銷.某藥店用元購進(jìn)甲,乙兩種不同型號(hào)的口罩共個(gè)進(jìn)行銷售,已知購進(jìn)甲種口罩與乙種口罩的費(fèi)用相同,購進(jìn)甲種口罩單價(jià)是乙種口罩單價(jià)的倍.

求購進(jìn)的甲,乙兩種口罩的單價(jià)各是多少?

若甲,乙兩種口罩的進(jìn)價(jià)不變,該藥店計(jì)劃用不超過元的資金再次購進(jìn)甲,乙兩種口罩共個(gè),求甲種口罩最多能購進(jìn)多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】松山區(qū)種子培育基地用AB,C三種型號(hào)的甜玉米種子共1500粒進(jìn)行發(fā)芽試驗(yàn),從中選出發(fā)芽率高的種子進(jìn)行推廣,通過試驗(yàn)知道,C型號(hào)種子的發(fā)芽率為80%,根據(jù)試驗(yàn)數(shù)據(jù)繪制了下面兩個(gè)不完整的統(tǒng)計(jì)圖:

1)求C型號(hào)種子的發(fā)芽數(shù);

2)通過計(jì)算說明,應(yīng)選哪種型號(hào)的種子進(jìn)行推廣?

3)如果將所有已發(fā)芽的種子放在一起,從中隨機(jī)取出一粒,求取到C型號(hào)發(fā)芽種子的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于點(diǎn),與軸的負(fù)半軸交于點(diǎn),且

1)求一次函數(shù)的表達(dá)式;

2)在軸上是否存在一點(diǎn),使得是以為腰的等腰三角形,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

3)反比例函數(shù)的圖象記為曲線,將向右平移3個(gè)單位長度,得曲線,則平移至處所掃過的面積是_________.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,從地面上的點(diǎn)A看一山坡上的電線桿PQ,測(cè)得桿頂端點(diǎn)P的仰角是45°,向前走9m到達(dá)B點(diǎn),測(cè)得桿頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°和30°.

1)求∠BPQ的度數(shù);

2)求該電線桿PQ的高度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示的是一種折疊門,已知門框的寬度AD=2米,兩扇門的大小相同(AB=CD),且AB+CD=AD,現(xiàn)將右邊的門CDD1C1繞門軸DD1向外面旋轉(zhuǎn)67°(如圖2).

1)求點(diǎn)CAD的距離.

2)將左邊的門ABB1A1繞門軸AA1向外面旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(如圖3),問α為多少時(shí),點(diǎn)B,C之間的距離最短?(參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39tan29.6°≈0.57,tan19.6°≈0.36sin29.6°≈0.49

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游泳池每次換水前后水的體積基本保持不變,當(dāng)該游泳池以每小時(shí)300立方米的速度放水時(shí),經(jīng)3小時(shí)能將池內(nèi)的水放完.設(shè)放水的速度為x立方米/時(shí),將池內(nèi)的水放完需y小時(shí).已知該游泳池每小時(shí)的最大放水速度為350立方米

1)求y關(guān)于x的函數(shù)表達(dá)式.

2)若該游泳池將放水速度控制在每小時(shí)200立方米至250立方米(含200立方米和250立方米),求放水時(shí)間y的范圍.

3)該游泳池能否在2.5小時(shí)內(nèi)將池內(nèi)的水放完?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案