【題目】 如圖,從地面上的點(diǎn)A看一山坡上的電線(xiàn)桿PQ,測(cè)得桿頂端點(diǎn)P的仰角是45°,向前走9m到達(dá)B點(diǎn),測(cè)得桿頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°和30°.
(1)求∠BPQ的度數(shù);
(2)求該電線(xiàn)桿PQ的高度.(結(jié)果保留根號(hào))
【答案】(1)30°;(2)(9+3)米.
【解析】
試題(1)延長(zhǎng)PQ交直線(xiàn)AB于點(diǎn)E,根據(jù)直角三角形兩銳角互余求得即可;
(2)設(shè)PE=x米,在直角△APE和直角△BPE中,根據(jù)三角函數(shù)利用x表示出AE和BE,根據(jù)AB=AE﹣BE即可列出方程求得x的值,再在直角△BQE中利用三角函數(shù)求得QE的長(zhǎng),則PQ的長(zhǎng)度即可求解.
解:延長(zhǎng)PQ交直線(xiàn)AB于點(diǎn)E,如圖所示:
(1)∠BPQ=90°﹣60°=30°;
(2)設(shè)PE=x米.
在直角△APE中,∠A=45°,
則AE=PE=x米;
∵∠PBE=60°,
∴∠BPE=30°,
在直角△BPE中,BE=PE=x米,
∵AB=AE﹣BE=9米,
則x﹣x=9,
解得:x=.
則BE=米.
在直角△BEQ中,QE=BE=米.
∴PQ=PE﹣QE=﹣=9+3(米).
答:電線(xiàn)桿PQ的高度為(9+3)米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小雪和小松分別從家和圖書(shū)館出發(fā),沿同一條筆直的馬路相向而行.小雪開(kāi)始跑步,中途在某地改為步行,且步行的速度為跑步速度的一半,小雪先出發(fā)5分鐘后,小松才騎自行車(chē)勻速回家.小雪到達(dá)圖書(shū)館恰好用了35分鐘.兩人之間的距離y(m)與小雪離開(kāi)出發(fā)地的時(shí)間x(min)之間的函數(shù)圖象如圖所示,則當(dāng)小松剛到家時(shí),小雪離圖書(shū)館的距離為____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,某個(gè)函數(shù)圖象上任意兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),且x1≤x2,d=|y1-y2|.將這個(gè)函數(shù)圖象在直線(xiàn)y=y1下方部分沿直線(xiàn)y=y1翻折,并將其向上平移d個(gè)單位,將這部分圖象與原函數(shù)圖象剩余部分的圖象組成的新圖象記為G,圖象G對(duì)應(yīng)的函數(shù)叫做這個(gè)函數(shù)的伴隨函數(shù).例如:點(diǎn)A(1,0)、B(2,1)在一次函數(shù)y=x-1的圖象上,則它的伴隨函數(shù)為.
(1)點(diǎn)A、B在直線(xiàn)y=-2x上,點(diǎn)A在第二象限,點(diǎn)B在x軸上.當(dāng)d=2時(shí),求函數(shù)y=-2x的伴隨函數(shù)所對(duì)應(yīng)的函數(shù)表達(dá)式.
(2)二次函數(shù)y=x2-2x-3的圖象交x軸負(fù)半軸交于點(diǎn)A,點(diǎn)B在拋物線(xiàn)上,設(shè)點(diǎn)B的橫坐標(biāo)為m.
①當(dāng)d=0時(shí),求該拋物線(xiàn)的伴隨函數(shù)的圖象G與直線(xiàn)y=4在第一象限的交點(diǎn)坐標(biāo);
②若直線(xiàn)y=2與該拋物線(xiàn)的伴隨函數(shù)的圖象G有四個(gè)交點(diǎn),直接寫(xiě)出m的取值范圍.
(3)拋物線(xiàn)y=x2-2nx+n2-n-1與y軸交于點(diǎn)A,點(diǎn)B在點(diǎn)A的左側(cè)拋物線(xiàn)上,且d=1,當(dāng)該拋物線(xiàn)的伴隨函數(shù)的圖象G上的點(diǎn)到x軸距離的最小值為1時(shí),直接寫(xiě)出n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護(hù)區(qū)開(kāi)展了尋找古樹(shù)活動(dòng).如圖,在一個(gè)坡度(或坡比)=1:2.4的山坡AB上發(fā)現(xiàn)有一棵占樹(shù)CD.測(cè)得古樹(shù)底端C到山腳點(diǎn)A的距離AC=26米,在距山腳點(diǎn)A水平距離6米的點(diǎn)E處,測(cè)得古樹(shù)頂端D的仰角∠AED=48°(古樹(shù)CD與山坡AB的剖面、點(diǎn)E在同一平面上,古樹(shù)CD與直線(xiàn)AE垂直),則古樹(shù)CD的高度約為( )(參考數(shù)據(jù):°≈0.73,cos8°≈0.67,tan48°≈1.11)
A.17.0米B.21.9米C.23.3米D.33.3米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)的圖象經(jīng)過(guò)點(diǎn),交軸于點(diǎn),(點(diǎn)在點(diǎn)左側(cè)),頂點(diǎn)為.
(1)求拋物線(xiàn)的解析式:
(2)將沿直線(xiàn)對(duì)折,點(diǎn)的對(duì)稱(chēng)點(diǎn)為,試求的坐標(biāo);
(3)拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn),使?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)y=﹣x+2分別與x軸,y軸交于A,B兩點(diǎn),與雙曲線(xiàn)y=交于E,F兩點(diǎn),若AB=2EF,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,已知AD=10cm,tanB=2,AE⊥BC于點(diǎn)E,且AE=4cm,點(diǎn)P是BC邊上一動(dòng)點(diǎn).若△PAD為直角三角形,則BP的長(zhǎng)為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD中,AB=4,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AD方向以每秒1個(gè)單位的速度運(yùn)動(dòng),連接BP,作點(diǎn)A關(guān)于直線(xiàn)BP的對(duì)稱(chēng)點(diǎn)E,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)若AD=6,P僅在邊AD運(yùn)動(dòng),求當(dāng)P,E,C三點(diǎn)在同一直線(xiàn)上時(shí)對(duì)應(yīng)的t的值.
(2)在動(dòng)點(diǎn)P在射線(xiàn)AD上運(yùn)動(dòng)的過(guò)程中,求使點(diǎn)E到直線(xiàn)BC的距離等于3時(shí)對(duì)應(yīng)的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),將△ADE沿線(xiàn)段DE向下折疊,得到圖2,下列關(guān)于圖2的結(jié)論中,不一定成立的是( )
A.DE∥BCB.△DBA是等腰三角形
C.點(diǎn)A落在BC邊的中點(diǎn)D.∠B+∠C+∠1=180°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com