【題目】如圖,在平面直角坐標(biāo)系中,四邊形是正方形,點(diǎn)的坐標(biāo)為,弧是以點(diǎn)為圓心,為半徑的圓弧;弧是以點(diǎn)為圓心,為半徑的圓弧,弧是以點(diǎn)為圓心,為半徑的圓弧,弧是以點(diǎn)為圓心,為半徑的圓弧.繼續(xù)以點(diǎn),,,為圓心按上述作法得到的曲線…稱為正方形的“漸開線”,則點(diǎn)的坐標(biāo)是__________.
【答案】
【解析】
根據(jù)畫弧的方法及其羅列的部分點(diǎn)的坐標(biāo)發(fā)現(xiàn):點(diǎn)Ax的坐標(biāo)滿足A4n=(1,4n+1), A4n+1=(4n+2,0)A4n+2=(0,-(4n+2))A4n+3=(-(4n+3),1),根據(jù)這一規(guī)律即可求出A2019的坐標(biāo).
觀察規(guī)律:A(1,1),A1(2,0), A2(0,-2), A3(-3,1), A4(1,5),A5(6,0), A6(0,-6)
∴A4n=(1,4n+1), A4n+1=(4n+2,0)A4n+2=(0,-(4n+2))A4n+3=(-(4n+3),1),
∵2019÷4=504…3
∴A2019=(-(4n+3),1)=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小魯在一個(gè)不透明的盒子里裝了5個(gè)除顏色外其他都相同的小球,其中有3個(gè)是紅球,2個(gè)是綠球,每次拿一個(gè)球然后放回去,拿2次,則至少有一次取到綠球的概率是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)的直線交軸正半軸于點(diǎn),將直線繞著點(diǎn)順時(shí)針旋轉(zhuǎn)后,分別與軸軸交于點(diǎn)、.
(1)若,求直線的函數(shù)關(guān)系式;
(2)連接,若的面積是5,求點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為4,以B為原點(diǎn)建立如圖1平面直角坐標(biāo)系中,E是邊CD上的一個(gè)動(dòng)點(diǎn),F是線段AE上一點(diǎn),將線段EF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到EF'.
(1)如圖2,當(dāng)E是CD中點(diǎn),時(shí),求點(diǎn)F'的坐標(biāo).
(2)如圖1,若,且F',D,B在同一直線上時(shí),求DE的長(zhǎng).
(3)如圖3,將正邊形ABCD改為矩形,AD=4,AB=2,其他條件不變,若,且F',D,B在同一直線上時(shí),則DE的長(zhǎng)是_______.(請(qǐng)用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題10分)如圖,AB是半圓O的直徑,CD⊥AB于點(diǎn)C,交半圓于點(diǎn)E, DF切半圓于點(diǎn)F。已知∠AEF=135°。
(1)求證:DF∥AB;
(2)若OC=CE,BF=,求DE的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個(gè)交點(diǎn)為P,若點(diǎn)P的縱坐標(biāo)是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點(diǎn)A(x1,y1)、B(x2,y2),當(dāng)y1>y2時(shí),試比較x1與x2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,熱氣球的探測(cè)器顯示,從熱氣球A看一棟大樓頂部B的俯角為,看這棟大樓底部C的俯角為,熱氣球A的高度為270米,則這棟大樓的高度為______米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,,,,,點(diǎn)E為AB邊上一點(diǎn),且.點(diǎn)F是BC邊上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)B、點(diǎn)C不重合),點(diǎn)G在射線CD上,且.設(shè)BF的長(zhǎng)為x,CG的長(zhǎng)為y.
(1)當(dāng)點(diǎn)G在線段DC上時(shí),求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)以點(diǎn)B為圓心,BF長(zhǎng)為半徑的⊙B與以點(diǎn)C為圓心,CG長(zhǎng)為半徑的⊙C相切時(shí),求線段BF的長(zhǎng);
(3)當(dāng)為等腰三角形時(shí),直接寫出線段BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形AOBC是正方形,點(diǎn)C的坐標(biāo)是(4,0).
(Ⅰ)正方形AOBC的邊長(zhǎng)為 ,點(diǎn)A的坐標(biāo)是 .
(Ⅱ)將正方形AOBC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)45°,點(diǎn)A,B,C旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A′,B′,C′,求點(diǎn)A′的坐標(biāo)及旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積;
(Ⅲ)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線OACB方向以1個(gè)單位/秒的速度勻速運(yùn)動(dòng),同時(shí),另一動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿折線OBCA方向以2個(gè)單位/秒的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)它們相遇時(shí)同時(shí)停止運(yùn)動(dòng),當(dāng)△OPQ為等腰三角形時(shí),求出t的值(直接寫出結(jié)果即可).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com