【題目】今年5月15日,亞洲文明對話大會在北京開幕.為了增進(jìn)學(xué)生對亞洲文化的了解,某學(xué)校開展了相關(guān)知識的宣傳教育活動。為了解這次宣傳活動的效果,學(xué)校從全校1200名學(xué)生中隨機(jī)抽取100名學(xué)生進(jìn)行知識測試(測試滿分100分,得分均為整數(shù)),并根據(jù)這100人的測試成績,制作了如下統(tǒng)計圖表。
100名學(xué)生知識測試成績的頻數(shù)表
成績(分) | 頻數(shù)(人) |
10 | |
15 | |
40 | |
15 |
由圖表中給出的信息回答下列問題:
(1)________,并補(bǔ)全額數(shù)直方圖________;
(2)小明在這次測試中成績?yōu)?/span>85分,你認(rèn)為85分一定是這100名學(xué)生知識測試成績的中位數(shù)嗎?請簡要說明理由;
(3)如果80分以上(包括80分)為優(yōu)秀,請估計全校1200名學(xué)生中成績優(yōu)秀的人數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(﹣1,0),C(2,3)兩點,與y軸交于點N,其頂點為D,
(1)拋物線及直線AC的函數(shù)關(guān)系式;
(2)若拋物線的對稱軸與直線AC相交于點B,E為直線AC上的任意一點,過點E作EF∥BD交拋物線于點F,以B,D,E,F為頂點的四邊形能否為平行四邊形?若能,求點E的坐標(biāo);若不能,請說明理由;
(3)若P是拋物線上位于直線AC上方的一個動點,直接寫出△APC的面積的最大值及此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在畫二次函數(shù)的圖象時,甲寫錯了一次項的系數(shù),列表如下
…… | ﹣1 | 0 | 1 | 2 | 3 | …… | |
…… | 6 | 3 | 2 | 3 | 6 | …… |
乙寫錯了常數(shù)項,列表如下:
…… | ﹣1 | 0 | 1 | 2 | 3 | …… | |
…… | ﹣2 | ﹣1 | 2 | 7 | 14 | …… |
通過上述信息,解決以下問題:
(1)求原二次函數(shù)的表達(dá)式;
(2)對于二次函數(shù),當(dāng)_____時,的值隨的值增大而增大;
(3)若關(guān)于的方程有兩個不相等的實數(shù)根,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從一架水平飛行的無人機(jī)的尾端點測得正前方的橋的左端點俯角為,且,無人機(jī)的飛行高度米,橋的長度為1255米.
(1)求點到橋左端點的距離;
(2)若從無人機(jī)前端點測得正前方的橋的右端點的俯角為,求這架無人機(jī)的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為原點,點,點.若正方形繞點順時針旋轉(zhuǎn),得正方形,記旋轉(zhuǎn)角為.
(Ⅰ)如圖①,當(dāng)時,求與的交點的坐標(biāo);
(Ⅱ)如圖②,當(dāng)時,求點的坐標(biāo);
(Ⅲ)若為線段的中點,求長的取值范圍(直接寫出結(jié)果即可)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是非零實數(shù),,在同一平面直角坐標(biāo)系中,二次函數(shù)與一次函數(shù)的大致圖象不可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線(m為常數(shù))交y軸于點A,與x軸的一個交點在2和3之間,頂點為B.①拋物線與直線有且只有一個交點;②若點、點、點在該函數(shù)圖象上,則;③將該拋物線向左平移2個單位,再向下平移2個單位,所得拋物線解析式為;④點A關(guān)于直線的對稱點為C,點D、E分別在x軸和y軸上,當(dāng)時,四邊形BCDE周長的最小值為.其中正確判斷的序號是__
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)拓展課上,老師給出如下定義:如果三角形有一邊上的中線長恰好等于該邊長的1.5倍,那么稱這個三角形為“趣味三角形”.
理解:
(1)如圖1,在△ABC中,AB=AC=,BC=2,試判斷△ABC是否為“趣味三角形”,并說明理由.
(2)如圖2,已知△ABC是“趣味三角形”,AD,BE,CF分別是BC,AC,AB邊上的中線,且AD=BC,試探究BE和CF之間的位置關(guān)系.
(3)如圖3,直線l1∥l2 , l1與l2之間的距離為2,點B,C在直線l1上,點A在直線l2上,AD,BE,CF分別是△ABC的邊BC,AC,AB上的中線.若△ABC是“趣味三角形”,BC=2.求BE2+CF2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線G:有最低點。
(1)求二次函數(shù)的最小值(用含m的式子表示);
(2)將拋物線G向右平移m個單位得到拋物線G1。經(jīng)過探究發(fā)現(xiàn),隨著m的變化,拋物線G1頂點的縱坐標(biāo)y與橫坐標(biāo)x之間存在一個函數(shù)關(guān)系,求這個函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)記(2)所求的函數(shù)為H,拋物線G與函數(shù)H的圖像交于點P,結(jié)合圖像,求點P的縱坐標(biāo)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com