【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點A落在AB上的點D處;再將邊BC沿CF翻折,使點B落在CD的延長線上的點B′處,兩條折痕與斜邊AB分別交于點E、F,則線段B′F的長為( 。
A. B. C. D.
【答案】B
【解析】首先根據(jù)折疊可得CD=AC=3,BC=4,∠ACE=∠DCE,∠BCF=∠B/CF,CE⊥AB,然后求得△BCF是等腰直角三角形,進(jìn)而求得∠B/GD=90°,CE-EF=,ED=AE=,
從而求得B/D=1,DF=,在Rt△B/DF中,由勾股定理即可求得B/F的長.
解:根據(jù)首先根據(jù)折疊可得CD=AC=3,B/C=B4,∠ACE=∠DCE,∠BCF=∠B/CF,CE⊥AB,
∴BD=4-3=1,∠DCE+∠B/CF=∠ACE+∠BCF,
∴∠ACB=90°,∴∠ECF=45°,
∴△ECF是等腰直角三角形,
∴EF=CE,∠EFC=45°,
∴∠BFC=∠B/FC=135°,
∴∠B/FD=90°,
∵S△ABC=AC×BC=AB×CE,
∴AC×BC=AB×CE,
∵根據(jù)勾股定理求得AB=5,
∴CE=,∴EF=,ED=AE==
∴DE=EF-ED=,
∴B/F==.
故答案為:
“點睛”此題主要考查了翻折變換,等腰三角形的判定和性質(zhì),勾股定理的應(yīng)用等,根據(jù)折疊的性質(zhì)求得相等的角是解本題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校學(xué)生會準(zhǔn)備調(diào)查七年級學(xué)生參加“武術(shù)類”、“書畫類”、“棋牌類”、“器樂類”四類校本課程的人數(shù):
(1)確定調(diào)查方式時,甲同學(xué)說:“我到七年級(1)班去調(diào)查全體同學(xué)”;乙同學(xué)說:“放學(xué)時我到校門口隨機(jī)調(diào)查部分同學(xué)”;丙同學(xué)說:“我到七年級每個班隨機(jī)調(diào)查一定數(shù)量的同學(xué)”。請你指出哪位同學(xué)的調(diào)查方式最合理:
(2)他們采用了最為合理的調(diào)查方法收集數(shù)據(jù),并繪制了如圖所示的統(tǒng)計表和扇形統(tǒng)計圖。
請你根據(jù)以上圖表提供的信息解答下列問題:
① a= , b= ;
②在扇形統(tǒng)計圖中器樂類所對應(yīng)扇形的圓心角的度數(shù)是 ;
③若我校七年級有學(xué)生480人,請你估計大約有多少學(xué)生參加武術(shù)類校本課程。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育用品店購進(jìn)一批單件為40元的球服,如果按單價60元銷售樣,那么一個月內(nèi)可售出240套,根據(jù)銷售經(jīng)驗,提高銷售單價會導(dǎo)致銷售量的減少,即銷售單價每提高5元,銷售量相應(yīng)減少20套.設(shè)銷售單價為x(x≥60)元,銷售量為y套.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)銷售單件為多少元時,月銷售額為14000元?
(3)當(dāng)銷售單價為多少元時,才能在一個月內(nèi)獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在線段上依次添加1個點,2個點,3個點,……,原線段上所成線段的總條數(shù)如下表:
添加點數(shù) | 1 | 2 | 3 | 4 |
線段總條數(shù) | 3 | 6 | 10 | 15 |
若在原線段上添加n個點,則原線段上所有線段總條數(shù)為( )
A. n+2 B. 1+2+3+…+n+n+1 C. n+1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AOB是一條直線,∠1=∠2,∠3=∠4,∠AOF=∠BOF=90°.則
(1)∠AOC的補(bǔ)角是_____;
(2)____是∠AOC的余角;
(3)∠COF的補(bǔ)角是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)下面是小馬虎解的一道題
題目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度數(shù).
解:根據(jù)題意可畫出圖,
∵∠AOC=∠BOA-∠BOC
=70°-15°
=55°,
∴∠AOC=55°.
若你是老師,會判小馬虎滿分嗎?若會,說明理由.若不會,請將小馬虎的的錯誤指出,并給出你認(rèn)為正確的解法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c滿足(a-)2++=0.
(1)求a,b,c的值.
(2)以a,b,c為邊能否構(gòu)成三角形?若能構(gòu)成,求出該三角形的周長;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知有理數(shù)a、b、c在數(shù)軸上對應(yīng)的點如圖所示,則下列結(jié)論正確的是( 。
A. c+b>a+b B. cb<ab C. ﹣c+a>﹣b+a D. ac>ab
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】陳老師要為他家的長方形餐廳(如圖1)選擇一張餐桌,并且想按如下要求擺放:餐桌一側(cè)靠墻,靠墻對面的桌邊留出寬度不小于80 cm的通道,另兩邊各留出寬度不小于60 cm的通道.那么在圖2的四張餐桌中,其規(guī)格符合要求的餐桌編號是________.
圖1 圖2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com