【題目】如圖,在鈍角三角形ABC中,AB=6cm,AC=12cm,動點D從A點出發(fā)到B點止,動點E從C點出發(fā)到A點止.點D運(yùn)動的速度為1cm/秒,點E運(yùn)動的速度為2cm秒.如果兩點同時運(yùn)動,那么當(dāng)以點A、D、E為頂點的三角形與△ABC相似時,運(yùn)動的時間是( )
A. 3或2.8 B. 3或4.8 C. 1或4 D. 1或6
【答案】B
【解析】
根據(jù)相似三角形的性質(zhì),由題意可知有兩種相似形式,△ADE∽△ABC和△ADE∽△ACB,可求運(yùn)動的時間是3秒或4.8秒.
根據(jù)題意得:設(shè)當(dāng)以點A、D、E為頂點的三角形與△ABC相似時,運(yùn)動的時間是x秒,①若△ADE∽△ABC,則AD:AB=AE:AC,即x:6=(12﹣2x):12,解得:x=3;
②若△ADE∽△ACB,則AD:AC=AE:AB,即x:12=(12﹣2x):6,解得:x=4.8.
所以當(dāng)以點A、D、E為頂點的三角形與△ABC相似時,運(yùn)動的時間是3秒或4.8秒.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形AOCB的邊長為4,反比例函數(shù)的圖象過點E(3,4).
(1)求反比例函數(shù)的解析式;
(2)反比例函數(shù)的圖象與線段BC交于點D,直線過點D,與線段AB相交于點F,求點F的坐標(biāo);
(3)連接OF,OE,探究∠AOF與∠EOC的數(shù)量關(guān)系,并證明.
(4)若點P是x軸上的動點,點Q是(1)中的反比例函數(shù)在第一象限圖象上的動點,且使得△PDQ為等腰直角三角形,請求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)報名參加學(xué)校秋季運(yùn)動會,有以下 5 個項目可供選擇:徑賽項目:100m、200m、1000m(分別用 A1、A2、A3 表示);田賽項目:跳遠(yuǎn),跳高(分別用 T1、T2 表示).
(1)該同學(xué)從 5 個項目中任選一個,恰好是田賽項目的概率 P 為 ;
(2)該同學(xué)從 5 個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率 P1,利用列表法或樹狀圖加以說明;
(3)該同學(xué)從 5 個項目中任選兩個,則兩個項目都是徑賽項目的概率 P2 為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=+mx+3與x軸交于A,B兩點,與y軸交于點C,點B的坐標(biāo)為(3,0),
(1)求m的值及拋物線的頂點坐標(biāo).
(2)點P是拋物線對稱軸l上的一個動點,當(dāng)PA+PC的值最小時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:小昊遇到這樣一個問題:如圖1,在△ABC中,BE是AC邊上的中線,點D在BC邊上,,AD與BE相交于點P,求的值.
小昊發(fā)現(xiàn),過點C作CF∥AD,交BE的延長線于點F,通過構(gòu)造△CEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).
請回答:寫出的值.
參考小昊思考問題的方法,解決問題:
(1)如圖3,在△ABC中,點D在BC的延長線上,,點E在AC上,且.求的值;
(2)如圖4,在△ABC中,點D在BC的延長線上,,點E在AC上,且,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點D、E,得到DE弧.
(1)求證:AB為⊙C的切線.
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為30,點M為線段AB上一動點,將等邊△ABC沿過點M的直線折疊,使點A落在直線BC上的點D處,且BD∶DC=1∶4,折痕與直線AC交于點N,則AN的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交AF于點G,連接DG.給出以下結(jié)論:①DG=DF;②四邊形EFDG是菱形;③EG2=GF×AF;④當(dāng)AG=6,EG=2時,BE的長為 ,其中正確的結(jié)論個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=6,動點P從點A出發(fā)沿AB向點B移動,(點P與點A、B不重合),作PD∥BC交AC于點D,在DC上取點E,以DE、DP為鄰邊作平行四邊形PFED,使點F到PD的距離,連接BF,設(shè)AP=x.
(1)△ABC的面積等于 ;
(2)設(shè)△PBF的面積為y,求y與x的函數(shù)關(guān)系,并求y的最大值.
(3)當(dāng)BP=BF時,求x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com