【題目】如圖,在△ABC中,AB=AC=5,BC=6,動點P從點A出發(fā)沿AB向點B移動,(點P與點A、B不重合),作PD∥BC交AC于點D,在DC上取點E,以DE、DP為鄰邊作平行四邊形PFED,使點F到PD的距離,連接BF,設(shè)AP=x.
(1)△ABC的面積等于 ;
(2)設(shè)△PBF的面積為y,求y與x的函數(shù)關(guān)系,并求y的最大值.
(3)當(dāng)BP=BF時,求x的值.
【答案】(1)12;(2)當(dāng)x=時,y取得最大值,最大值為;(3)x=
【解析】
(1)根據(jù)題意,易得△ABC的高,再由三角形面積公式可得答案;
(2)根據(jù)平行線的性質(zhì),可得PD、PM的值,進(jìn)而可得AN的值,再由圖示可得:y=S梯形PBCD-SPFED-S梯形PFCE;代入數(shù)據(jù)可得答案.
(3)過B作BT⊥AC于T交PF于K,由(2)得出的關(guān)系可知△AND∽△AGE,利用三角形面積,得到BT的值,繼而得到cos∠A的值,最后得到x的值.
(1)根據(jù)題意,作AQ⊥BC,交BC于點Q,
易得:BQ=3,由勾股定理,易得AQ=4;
則
(2)設(shè)AQ與PD交于點M,與EF交于點N;
PD∥BC,
∴△APD∽△ABC,
∴
且AP=x,AB=5,BC=6,
可得:
易得,則AN=AM+MN=AM+HF=x,
∴y=S梯形PBCD﹣SPFED﹣S梯形BFEC
故當(dāng)x=時,y取得最大值,最大值為.
(3)過B作BT⊥AC于T交PF于K,
∵PF∥AC,則BK⊥PF于K,由(2)知道
∴△AND∽△AGE,
∴
∴
∴
在△ABC中,∴
在Rt△ABT中,由勾股定理得,∴cos∠A
若BP=BF,則三線合一,
在Rt△BPK中cos∠BPK,
∴
解得
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在鈍角三角形ABC中,AB=6cm,AC=12cm,動點D從A點出發(fā)到B點止,動點E從C點出發(fā)到A點止.點D運(yùn)動的速度為1cm/秒,點E運(yùn)動的速度為2cm秒.如果兩點同時運(yùn)動,那么當(dāng)以點A、D、E為頂點的三角形與△ABC相似時,運(yùn)動的時間是( )
A. 3或2.8 B. 3或4.8 C. 1或4 D. 1或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;
(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角三角形ABC中,∠ACB=90°,D、E是邊AB上兩點,且CE所在直線垂直平分線段AD,CD平分∠BCE,BC=2,則AB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為5,點A的坐標(biāo)為(﹣4,0),點B在y軸上,若反比例函數(shù)y=(k≠0)的圖象過點C,則該反比例函數(shù)的表達(dá)式為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(5,0)兩點,直線y=﹣x+3與y軸交于點C,與x軸交于點D.點P是直線CD上方的拋物線上一動點,過點P作PF⊥x軸于點F,交直線CD于點E,設(shè)點P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)求PE的長最大時m的值.
(3)Q是平面直角坐標(biāo)系內(nèi)一點,在(2)的情況下,以PQCD為頂點的四邊形是平行四邊形是否存在?若存在,直接寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知方程ax2+bx+c=0(a≠0)是關(guān)于x的一元二次方程.
(1)直接寫出方程根的判別式;
(2)寫出求根公式的推導(dǎo)過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:矩形ABCD中AB=2,BC= ,⊙A是以A為圓心,半徑r=1的圓,若⊙A繞著點B順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α( 0°<α<180°);當(dāng)旋轉(zhuǎn)后的圓與矩形ABCD的邊相切時,α=________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,以AB為直徑作⊙O交BC于點D,E為AC的中點,連接DE并延長交BA的延長線于點F.
(1)求證:DE是⊙O的切線;
(2)若∠F=30°,⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com