如圖,在Rt△ABC中,∠ABC=90°,O是AB上的一點,以O(shè)為圓心,以O(shè)B為半徑作圓,交AC于E、F,交AB于D.若E是的中點,且AE:EF=3:1,F(xiàn)C=4,求∠CBF的正弦值及BC的長.

【答案】分析:連接OE,DF,由已知可推出OE∥BF,根據(jù)平行線的性質(zhì)可得到AE:EF=AO:OB,AE:AF=OE:BF⊙,設(shè)OB=r,則可求出OA,BF,AD的值,根據(jù)已知可推出BC是⊙O的切線,再利用勾股定理可求得r的值,從而可求得BC的長及∠CBF的正弦值.
解答:解:解法一:連接OE,DF;
∵E是的中點,BD是⊙O的直徑,
∴OE⊥DF,∠DFB=90°,
∴OE∥BF,(1分)
∴AE:EF=AO:OB,AE:AF=OE:BF;
∵AE:EF=3:1,
∴AO:OB=3:1,AE=3EF,OE:BF=3:4;
設(shè)OB=r,則AO=3r,BF=r,(2分)
∴AD=2r;
∵AE•AF=AD•AB,
∴3EF•4EF=2r•4r,
∴EF=r;(3分)
∵∠ABC=90°,DB是⊙O的直徑,
∴BC是⊙O的切線,
∴BC2=CF•CE=4(4+EF);
在Rt△ABC中,由勾股定理,得
BC2=AC2-AB2=(4EF+4)2-(4r)2,
∴4(4+EF)=(4EF+4)2-(4r)2;(6分)
即4(4+r)=(4×r+4)2-(4r)2
∴r=,(7分)
∴BC=;(8分)
∵∠CBF=∠BDF,sin∠BDF==,
∴sin∠CBF=.(9分)
(說明:只求出ÐCBF的正弦值給4分)

解法二:
連接DE、OE、EB;
由解法一,有BF=r,EF=DE=r,CB是切線;
∵DB是直徑,
∴∠DEB=90°,
在Rt△DEB中,由勾股定理,有DB2=DE2+EB2,
∴EB=r;(4分)
∵∠CBF=∠CEB,且∠C公用,
∴△CFB∽△CBE,
=
由FC=4,得BC=,(7分)
∵CB2=CF•CE,
∴EF=
∴r=,
∴BF=,AF=14;
過F點作FG∥AB,交CB于G,
=,
∴FG=,
在Rt△FGB中,由正弦定義,有
sin∠FBG=
∴sin∠FBG=.(9分)
點評:此題主要考查學(xué)生對切線的判定,平行線的性質(zhì)及勾股定理等知識點的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
(1)當(dāng)點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案