【題目】如圖,在矩形ABCD中,AB=4,BC=6,若點(diǎn)P在AD邊上,連接BP、PC,△BPC是以PB為腰的等腰三角形,則PB的長(zhǎng)為

【答案】5或6
【解析】解:如圖,

在矩形ABCD中,AB=CD=4,BC=AD=6.

如圖1,當(dāng)PB=PC時(shí),點(diǎn)P是BC的中垂線(xiàn)與AD的交點(diǎn),則AP=DP= AD=3.

在Rt△ABP中,由勾股定理得 PB= = =5;

如圖2,當(dāng)BP=BC=6時(shí),△BPC也是以PB為腰的等腰三角形.

綜上所述,PB的長(zhǎng)度是5或6.

所以答案是:5或6.

【考點(diǎn)精析】通過(guò)靈活運(yùn)用等腰三角形的判定和勾股定理的概念,掌握如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱(chēng):等角對(duì)等邊).這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的三邊AB、BCCA長(zhǎng)分別是20、30、40,其三條角平分線(xiàn)將△ABC分為三個(gè)三角形,則SABOSBCOSCAO等于( )

A. 111

B. 123

C. 234

D. 345

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是線(xiàn)段AB上一點(diǎn),AB=4cm,AO=1cm,若線(xiàn)段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°到線(xiàn)段A′B′的位置,則線(xiàn)段AB在旋轉(zhuǎn)過(guò)程中掃過(guò)的圖形的面積為 cm2 . (結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,4),B(﹣5,2),C(﹣2,1).

(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)圖形△A1B1C1;
(2)畫(huà)出將△ABC繞原點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)90°得到的△A2B2C2;
(3)求(2)中線(xiàn)段OA掃過(guò)的圖形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某日的錢(qián)塘江觀潮信息如表:


按上述信息,小紅將“交叉潮”形成后潮頭與乙地之間的距離 (千米)與時(shí)間 (分鐘)的函數(shù)關(guān)系用圖3表示,其中:“11:40時(shí)甲地‘交叉潮’的潮頭離乙地12千米”記為點(diǎn) ,點(diǎn) 坐標(biāo)為 ,曲線(xiàn) 可用二次函數(shù) , 是常數(shù))刻畫(huà).
(1)求 的值,并求出潮頭從甲地到乙地的速度;
(2)11:59時(shí),小紅騎單車(chē)從乙地出發(fā),沿江邊公路以 千米/分的速度往甲地方向去看潮,問(wèn)她幾分鐘后與潮頭相遇?
(3)相遇后,小紅立即調(diào)轉(zhuǎn)車(chē)頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過(guò)乙地后均勻加速,而單車(chē)最高速度為 千米/分,小紅逐漸落后,問(wèn)小紅與潮頭相遇到落后潮頭1.8千米共需多長(zhǎng)時(shí)間?(潮水加速階段速度 , 是加速前的速度).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程|x1||x2|5.由絕對(duì)值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點(diǎn)對(duì)應(yīng)的x的值.在數(shù)軸上,1和-2的距離為3,滿(mǎn)足方程的x對(duì)應(yīng)點(diǎn)在1的右邊或-2的左邊,若x對(duì)應(yīng)點(diǎn)在1的右邊,由圖可以看出x2;同理,若x對(duì)應(yīng)點(diǎn)在-2的左邊,可得x=-3,故原方程的解是x2x=-3.

參考閱讀材料,解答下列問(wèn)題:

(1)方程|x3|4的解為________

(2)解不等式|x3||x4|≥9;

(3)|x3||x4|≥a對(duì)任意的x都成立,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)某商場(chǎng)用2500元購(gòu)進(jìn)了A、B兩種新型節(jié)能臺(tái)燈共50盞,這兩種臺(tái)燈的進(jìn)價(jià),標(biāo)價(jià)如下表所示:

(1)這兩種臺(tái)燈各購(gòu)進(jìn)多少盞?

(2)若A型臺(tái)燈按標(biāo)價(jià)的九折出售,B型臺(tái)燈按標(biāo)價(jià)的八折出售,那么這批臺(tái)燈全部售完后,商場(chǎng)共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,點(diǎn)B的坐標(biāo)為(3,0),頂點(diǎn)C的坐標(biāo)為(1,4).

(1)求二次函數(shù)的解析式和直線(xiàn)BD的解析式;
(2)點(diǎn)P是直線(xiàn)BD上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線(xiàn),交拋物線(xiàn)于點(diǎn)M,當(dāng)點(diǎn)P在第一象限時(shí),求線(xiàn)段PM長(zhǎng)度的最大值;
(3)在拋物線(xiàn)上是否存在異于B、D的點(diǎn)Q,使△BDQ中BD邊上的高為2 ?若存在求出點(diǎn)Q的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】榮慶公司計(jì)劃從商店購(gòu)買(mǎi)同一品牌的臺(tái)燈和手電筒,已知購(gòu)買(mǎi)一個(gè)臺(tái)燈比購(gòu)買(mǎi)一個(gè)手電筒多用20元,若用400元購(gòu)買(mǎi)臺(tái)燈和用160元購(gòu)買(mǎi)手電筒,則購(gòu)買(mǎi)臺(tái)燈的個(gè)數(shù)是購(gòu)買(mǎi)手電筒個(gè)數(shù)的一半.
(1)求購(gòu)買(mǎi)該品牌一個(gè)臺(tái)燈、一個(gè)手電筒各需要多少元?
(2)經(jīng)商談,商店給予榮慶公司購(gòu)買(mǎi)一個(gè)該品牌臺(tái)燈贈(zèng)送一個(gè)該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個(gè)數(shù)是臺(tái)燈個(gè)數(shù)的2倍還多8個(gè),且該公司購(gòu)買(mǎi)臺(tái)燈和手電筒的總費(fèi)用不超過(guò)670元,那么榮慶公司最多可購(gòu)買(mǎi)多少個(gè)該品牌臺(tái)燈?

查看答案和解析>>

同步練習(xí)冊(cè)答案