(2010•金山區(qū)二模)如圖,在△ABC中,sin∠B=,∠C=30°,AB=10.
(1)求AC的長;
(2)求△ABC的面積.

【答案】分析:(1)作AD⊥BC,垂足為點D,在直角△ABD中,根據(jù)三角函數(shù)即可求得AD,再在直角△ACD中,根據(jù)三角函數(shù)即可求得AC的值;
(2)在直角△ABD與直角△ACD中,根據(jù)三角函數(shù)即可求得BD與CD,進(jìn)而求得BC,根據(jù)三角形的面積公式即可求解.
解答:解:(1)作AD⊥BC,垂足為點D,(1分)
在△ABD中,∠ADB=90°,
∴sin∠B=(2分)
∵AB=10,∴AD=8.(1分)
在△ACD中,∠ADC=90°,∠C=30°,
∴AC=2AD=16;(1分)

(2)在△ABD中,∠ADB=90°,AB=10,AD=8,
∴BD=6.(2分)
在△ACD中,∠ADC=90°,AD=8,AC=16,
∴CD=(2分)
∴BC=
.(1分)
點評:本題考查了解直角三角形,一般三角形的問題可以轉(zhuǎn)化為直角三角形的問題解決,轉(zhuǎn)化的方法是作高線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年上海市金山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•金山區(qū)二模)在直角坐標(biāo)平面內(nèi),O為原點,二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A(-1,0)和點B(0,3),頂點為P.
(1)求二次函數(shù)的解析式及點P的坐標(biāo);
(2)如果點Q是x軸上一點,以點A、P、Q為頂點的三角形是直角三角形,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年上海市金山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:選擇題

(2010•金山區(qū)二模)在平面直角坐標(biāo)系中,將二次函數(shù)y=2x2的圖象向左平移3個單位,所得圖象的解析式為( )
A.y=2(x+3)2
B.y=2(x-3)2
C.y=2x2+3
D.y=2x2-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年上海市金山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•金山區(qū)二模)如圖,在Rt△ABC中,∠C=90°,AC=BC,D是AB邊上一點,E是在AC邊上的一個動點(與點A、C不重合),DF⊥DE,DF與射線BC相交于點F.
(1)如圖2,如果點D是邊AB的中點,求證:DE=DF;
(2)如果AD:DB=m,求DE:DF的值;
(3)如果AC=BC=6,AD:DB=1:2,設(shè)AE=x,BF=y,
①求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
②以CE為直徑的圓與直線AB是否可相切?若可能,求出此時x的值;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年上海市金山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•金山區(qū)二模)如圖,在△ABC中,點D、E分別在AB、AC上,連接BE、CD相交于點O.
(1)如果AB=AC,AD=AE,求證:OB=OC;
(2)在①OB=OC,②BD=CE,③∠ABE=∠ACD,④∠BDC=∠CEB四個條件中選取兩個個作為條件,就能得到結(jié)論“△ABC是等腰三角形”,那么這兩個條件可以是:______(只要填寫一種情況).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年上海市金山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•金山區(qū)二模)某校為了了解七年級學(xué)生每學(xué)期參加社會實踐活動次數(shù)的情況,隨機抽樣調(diào)查了該校七年級部分學(xué)生一個學(xué)期參加社會實踐活動次數(shù),下面是小明用得到的數(shù)據(jù)繪制了下面兩幅統(tǒng)計圖.

請你根據(jù)圖中提供的信息,回答下列問題:
(1)在扇形統(tǒng)計圖中一個學(xué)期參加9次社會實踐活動的學(xué)生所占的百分率是______;
(2)把圖補完整;
(3)在這次抽樣調(diào)查中“一個學(xué)期參加社會實踐活動的次數(shù)”的眾數(shù)是______;
(4)如果該校有七年級學(xué)生200人,估計“一個學(xué)期參加社會實踐活動次數(shù)至少6次”的大約有______人.

查看答案和解析>>

同步練習(xí)冊答案