【題目】如圖所示,在平面直角坐標系中,A(﹣1,4),B(﹣33),C(﹣21

1)已知ABCABC關于x軸對稱,畫出ABC,并寫出以下各點坐標:A   ;B   ;C   

2)在y軸上作出點P(在圖中顯示作圖過程),使得PA+PC的值最小,并寫出點P的坐標   

【答案】(1)(﹣1,﹣4)、(﹣3,﹣3)、(﹣2,﹣1);(2)(0,3).

【解析】

1)分別作出三個頂點關于x軸的對稱點,再首尾順次連接可得答案;
2)作點C關于y軸的對稱點C″,連接AC″,與y軸的交點即為所求點P

解:(1)如圖所示,ABC即為所求.

由圖知A(﹣1,﹣4)、B(﹣3,﹣3),C(﹣2,﹣1),

故答案為:(﹣1,﹣4)、(﹣3,﹣3)、(﹣2,﹣1);

2)如圖所示,點P即為所求,其坐標為(03),

故答案為:(0,3).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小李從市場上買回一塊矩形鐵皮,他將此矩形鐵皮的四個角各剪去一個邊長為1米的正方形后,剩下的部分剛好能圍成一個容積為35 m3的無蓋長方體箱子,且此長方體箱子的底面長比寬多2m,現(xiàn)己知購買這種鐵皮每平方米需30元錢,問小李購回這張矩形鐵皮共花了多少元錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+cx軸交于點A3,0),與y軸交于點B,拋物線y=x2+bx+c經(jīng)過點AB

1)求點B的坐標和拋物線的解析式;

2Mm,0)為x軸上一動點,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點P,N

①點M在線段OA上運動,若以B,P,N為頂點的三角形與APM相似,求點M的坐標;

②點Mx軸上自由運動,若三個點M,P,N中恰有一點是其它兩點所連線段的中點(三點重合除外),則稱M,PN三點為共諧點.請直接寫出使得MP,N三點成為共諧點m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,,將繞著點旋轉(zhuǎn)一定的角度,得到.

(1)若點邊上中點,連接,則線段的范圍為________.

(2)如圖,當直角頂點邊上時,延長,交邊于點,請問線段、具有怎樣的數(shù)量關系,請寫出探索過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:四邊形ABCD中,對角線BD平分∠ABC,∠ACB74°,∠ABC46°,且∠BAD+CAD180°,那么∠BDC的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知CFABC的外角∠ACE的角平分線,DCF上一點,且DADB

1)求證:∠ACB=∠ADB

2)求證:AC+BC2BD;

3)如圖2,若∠ECF60°,證明:ACBC+CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線軸相交于、兩點(其中為坐標原點),過點作直線軸于點,交拋物線于點,點關于拋物線對稱軸的對稱點為(其中、不重合),連接軸于點,連接

(1)時,求拋物線的解析式和的長;

如圖時,若,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AB 是⊙O的直徑,弦CD⊥AB于點H,點M是弧CBD 上任意一點,AH=2,CH=4.

(1)求⊙O 的半徑r 的長度;

(2)求sin∠CMD;

(3)直線BM交直線CD于點E,直線MH交⊙O 于點 N,連接BNCE于點 F,求HEHF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.

(1)求二次函數(shù)y=ax2+bx+c的表達式;

(2)過點AAC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點PAC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積;

(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,且AE為其一邊,求點M、N的坐標.

查看答案和解析>>

同步練習冊答案