精英家教網 > 初中數學 > 題目詳情
二次函數y=-3(x-1)2+2圖象的頂點坐標是______.
∵拋物線解析式為y=-3(x-1)2+2,
∴二次函數圖象的頂點坐標是(1,2).
故答案為(1,2).
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,拋物線y=mx2-2mx-2(m≠0)與y軸交于點A,其對稱軸與x軸交于點B.
(1)求點A,B的坐標;
(2)設直線l與直線AB關于該拋物線的對稱軸對稱,求直線l的解析式;
(3)若該拋物線在-2<x<-1這一段位于直線l的上方,并且在2<x<3這一段位于直線AB的下方,求該拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在平面直角坐標系中, 拋物線+與直線交于A, B兩點,點A在點B的左側.
(1)如圖1,當時,直接寫出A,B兩點的坐標;
(2)在(1)的條件下,點P為拋物線上的一個動點,且在直線AB下方,試求出△ABP面積的最大值及此時點P的坐標;
(3)如圖2,拋物線+ 軸交于C,D兩點(點C在點D的左側).在直線上是否存在唯一一點Q,使得∠OQC=90°?若存在,請求出此時的值;若不存在,請說明理由.

圖1                                   圖2

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,直線與x軸,y軸分別相交于點B,點C,經過B、C兩點的拋物線與x軸的另一交點為A,頂點為P,且對稱軸是直線
(1)求A點的坐標及該拋物線的函數表達式;
(2)求出∆PBC的面積;
(3)請問在對稱軸右側的拋物線上是否存在點Q,使得以點A、B、C、Q所圍成的四邊形面積是∆PBC的面積的?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

下列函數是二次函數的是( 。
A.y=
2
x
+x2
B.y=
2
5
+x2
C.y=(x-1)2-x2D.y=
1
2
x(x-1)2

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

用配方法求二次函數y=4x2-24x+26的對稱軸和頂點坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

二次函數y=x2的圖象的開口方向是( 。
A.向上B.向下C.向左D.向右

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

對非負實數x“四舍五入”到個位的值記為<x>,
即:當n為非負整數時,如果n-
1
2
≤x<n+
1
2
則<x>=n.
如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…
試解決下列問題:
(1)填空:①<π>=______(π為圓周率);
②如果<2x-1>=3,則實數x的取值范圍為______;
(2)①當x≥0,m為非負整數時,求證:<x+m>=m+<x>;
②舉例說明<x+y>=<x>+<y>不恒成立;
(3)求滿足<x>=
4
3
x
的所有非負實數x的值;
(4)設n為常數,且為正整數,函數y=x2-x+
1
4
的自變量x在n≤x<n+1范圍內取值時,函數值y為整數的個數記為a,滿足<
k
>=n的所有整數k的個數記為b.求證:a=b=2n.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖:拋物線y=ax2+bx+c(a≠0)的圖象與x軸的一個交點是(-2,0),頂點是(1,3).下列說法中不正確的是( 。
A.拋物線的對稱軸是x=1
B.拋物線的開口向下
C.拋物線與x軸的另一個交點是(2,0)
D.當x=1時,y有最大值是3

查看答案和解析>>

同步練習冊答案