如圖,直線與x軸,y軸分別相交于點B,點C,經(jīng)過B、C兩點的拋物線與x軸的另一交點為A,頂點為P,且對稱軸是直線
(1)求A點的坐標及該拋物線的函數(shù)表達式;
(2)求出∆PBC的面積;
(3)請問在對稱軸右側(cè)的拋物線上是否存在點Q,使得以點A、B、C、Q所圍成的四邊形面積是∆PBC的面積的?若存在,請求出點Q的坐標;若不存在,請說明理由.
(1)(1,0),.(2)3;(3)

試題分析:(1)先由直線y=-x+3與x軸,y軸分別相交于點B,點C,求出B(3,0),C(0,3),再根據(jù)拋物線y=ax2+bx+c的對稱軸是直線x=2,求出與x軸的另一交點A的坐標為(1,0),然后將A(1,0),B(3,0),C(0,3)代入y=ax2+bx+c,運用待定系數(shù)法即可求出該拋物線的函數(shù)表達式;
(2)先利用配方法將二次函數(shù)寫成頂點式,得到頂點P的坐標,再設(shè)拋物線的對稱軸交直線y=-x+3于點M,由PM∥y軸,得出M的坐標,然后根據(jù)S△PBC=•PM•|xC-xB|即可求出△PBC的面積;
(3)設(shè)Q(m,m2-4m+3),首先求出以點A、B、C、Q所圍成的四邊形面積=S△PBC=×3=.再分兩種情況進行討論:①當點Q在PB段時,由S四邊形ACBQ=S△ABC+S△ABQ=3+|yQ|,得出|yQ|=-3=,即-m2+4m-3=,解方程求出m的值,得到Q1的坐標;②當點Q在BE段時,過Q點作QH⊥x軸,交直線于H,連結(jié)BQ.由S四邊形ACQB=S△ABC+S△CBQ=3+(m2-3m),得出(m2-3m)=-3=,解方程求出m的值,得到Q2的坐標.
試題解析:(1)直線與x軸相交于點
∴當時,
∴點的坐標為
又∵拋物線過兩點,且對稱軸為,根據(jù)拋物線的對稱性,
∴點的坐標為
過點,易知,

又∵拋物線過點,
解得   

(2)連結(jié)PB、PC,

,得
設(shè)拋物線的對稱軸交直線于點,
又∵PM∥y軸,則,

(3)由圖可知,點Q應(yīng)分為兩種情況,在PB段或在BE段。
      

設(shè)
當點Q在PB段時,,
,可知
,即
解之,得,
又點Q在對稱軸的右側(cè),則,

當點Q在BE段時,過Q作QH⊥x軸,交直線于H,連結(jié)BQ,則設(shè)
,

,
,解之,得
又點Q在對稱軸的右側(cè),則,

綜上所述,當時,點A、B、C、Q所圍成的四邊形面積是∆PBC的面積的
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=-3(x-1)2+2圖象的頂點坐標是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用長為32米的籬笆圍一個矩形養(yǎng)雞場,設(shè)圍成的矩形一邊長為x米,面積為y平方米.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)當x為何值時,圍成的養(yǎng)雞場面積為60平方米?
(3)能否圍成面積為70平方米的養(yǎng)雞場?如果能,請求出其邊長;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標原點,A、B兩點的坐標分別為(-3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過點B,且頂點在直線x=上.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點A、B、O的對應(yīng)點分別是D、C、E,當四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
(3)在(2)的條件下,連接BD,已知對稱軸上存在一點P使得△PBD的周長最小,求出P點的坐標;
(4)在(2)、(3)的條件下,若點M是線段OB上的一個動點(點M與點O、B不重合),過點M作MN∥BD交x軸于點N,連接PM、PN,設(shè)OM的長為t,△PMN的面積為S,求S和t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時M點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在平面直角坐標系中,點A、C分別在y軸和x軸上,AB∥x軸,sinC=,點P從O點出發(fā),沿邊OA、AB、BC勻速運動,點Q從點C出發(fā),以1cm/s的速度沿邊CO勻速運動。點P與點Q同時出發(fā),其中一點到達終點,另一點也隨之停止運動.設(shè)點P運動的時間為t(s),△CPQ的面積為S(cm2), 已知S與t之間的函數(shù)關(guān)系如圖2中曲線段OE、線段EF與曲線段FG給出.
(1)點P的運動速度為     cm/s, 點B、C的坐標分別為     ,     ;
(2)求曲線FG段的函數(shù)解析式;
(3)當t為何值時,△CPQ的面積是四邊形OABC的面積的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=-x2+2bx+c,當x>1時,y的值隨x值的增大而減小,則實數(shù)b的取值范圍是( 。
A.b≥-1B.b≤-1C.b≥1D.b≤1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線與拋物線的圖象都經(jīng)過軸上的D點,拋物線與軸交于A、B兩點,其對稱軸為直線,且.直線軸交于點C(點C在點B的右側(cè)).則下列命題中正確命題的個數(shù)是(     ).
;  ②;  ③;  ④; ⑤
A.1        B.2      C.3      D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,∠C=90°,AC=4,BC=2,點A、C分別在x軸、y軸上,當點A在x軸上運動時,點C隨之在y軸上運動.在運動過程中,點B到原點的最大距離是(    )

A.6      B.2      C.2           D.2+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)≠0)圖象如圖所示,下列結(jié)論:①>0;②=0;③當≠1時,;④>0;⑤若,且,則=2.其中正確的有(  )
A.①②③ B.②④ C.②⑤ D.②③⑤

查看答案和解析>>

同步練習(xí)冊答案