【題目】如圖,放置的△OAB,△,△,…都是邊長為2的等邊三角形,邊AO在軸上,點、、…都在直線上,則點的坐標(biāo)為_______
【答案】(,2021)
【解析】
延長A1B1交x軸于C,可證A1B1⊥x軸,由條件可求得∠B1OC=30°,利用直角三角形的性質(zhì)可求得B1C=1,OC=,可求得B1的坐標(biāo),進(jìn)而可求得A1的坐標(biāo),同理可求得A2、A3的坐標(biāo),則可得出規(guī)律,求得A2019的坐標(biāo).
解:如圖,延長A1B1交x軸于C,
∵△OAB,△,△,…是等邊三角形,且邊長為2,
∴∠AOB1=60°,OB1=2,
∴∠B1OC=30°,=60°,
∴∠OB1C=60°,
∴∠OCB1=90°,
在Rt△B1OC中,可得B1C=1,OC=,
∴B1的坐標(biāo)為(,1),
∴A1的坐標(biāo)為(,3),
同理A2(2,4)、A3(3,5),
∴An的坐標(biāo)為(n,n+2),
∴A2019的坐標(biāo)為(2019,2021),
故答案為:(2019,2021).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn)如圖,矩形ABCD中,E是AD的中點,將△ABE沿BE折疊后得到△GBE,且點G在矩形ABCD內(nèi)部.小明將BG延長交DC于點F,認(rèn)為GF=DF,你同意嗎?說明理由.
(2)問題解決(設(shè)DF=x,AD=y.)
保持(1)中的條件不變,若DC=2DF,求的值;
(3)類比探求
保持(1)中條件不變,若DC=nDF,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店準(zhǔn)備購進(jìn)一批電冰箱和空調(diào),每臺電冰箱的進(jìn)價比每臺空調(diào)的進(jìn)價多400元,商店用8000元購進(jìn)電冰箱的數(shù)量與用6400元購進(jìn)空調(diào)的數(shù)量相等.
(1)求每臺電冰箱與空調(diào)的進(jìn)價分別是多少?
(2)已知電冰箱的銷售價為每臺2100元,空調(diào)的銷售價為每臺1750元.若商店準(zhǔn)備購進(jìn)這兩種家電共100臺,其中購進(jìn)電冰箱x臺(33≤x≤40),那么該商店要獲得最大利潤應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,以直線x=對稱軸的拋物線y=ax2+bx+c與直線l:y=kx+m(k>0)交于A(1,1),B兩點,與y軸交于C(0,5),直線l與y軸交于點D.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)直線l與拋物線的對稱軸的交點為F,G是拋物線上位于對稱軸右側(cè)的一點,若,且△BCG與△BCD面積相等,求點G的坐標(biāo);
(3)若在x軸上有且僅有一點P,使∠APB=90°,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,甲從家出發(fā)前往與家相距千米的旅游景點旅游,以千米/時的速度步行小時后,改騎自行車以千米/時的速度繼續(xù)向目的地出發(fā),乙在甲前面千米處,在甲出發(fā)小時后開車追趕甲,兩人同時到達(dá)目的地.設(shè)甲、乙兩人離甲家的距離(千米)與甲出發(fā)的時間(小時)之間的函數(shù)關(guān)系如圖所示.
(1)求乙的速度;
(2)求甲出發(fā)多長時間后兩人第一次相遇;
(3)求甲出發(fā)幾小時后兩人相距千米. .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店11月份購進(jìn)甲、乙兩種水果共花費1700元,其中甲種水果8元/千克,乙種水果18元/千克.12月份,這兩種水果的進(jìn)價上調(diào)為:甲種水果10元/千克,乙種水果20元/千克.
(1)若該店12月份購進(jìn)這兩種水果的數(shù)量與11月份都相同,將多支付貨款300元,求該店11月份購進(jìn)甲、乙兩種水果分別是多少千克?
(2)若12月份將這兩種水果進(jìn)貨總量減少到120千克,設(shè)購進(jìn)甲種水果a千克,需要支付的貨款為w元,求w與a的函數(shù)關(guān)系式;
(3)在(2)的條件下,若甲種水果不超過90千克,則12月份該店需要支付這兩種水果的貨款最少應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點是上一點且,過點畫線段,使點在的邊上且點,與的一個頂點組成的小三角形與相似,則滿足條件的線段的長度分別為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某所中學(xué)七、八、九年級各有6個班級,每個班級人數(shù)為50左右,根據(jù)實際情況,決定開設(shè)“A:乒乓球,B:籃球,C:跑步,D:跳繩”這四種項目.為了解學(xué)生喜歡哪一種項目,該學(xué)校體育組隨機抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖.請結(jié)合圖中信息解答下列問題:
(1)樣本容量是________,請你為體育組提供一種較為合理的抽樣方案;
(2)把條形統(tǒng)計圖補充完整;
(3)該校貝貝、晶晶、洋洋和妮妮是學(xué)校的校園之星,現(xiàn)要從這四人中選出兩人作為“陽光體育”運動形象代言人,貝貝和晶晶同時被抽到的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com