作业宝如圖,已知二次函數(shù)y=x2+bx+3的圖象過x軸上點A(1,0)和點B,且與y軸交與點C,頂點為P.
(1)求此二次函數(shù)的解析式及點P的坐標(biāo).
(2)過點C且平行于x軸的直線與二次函數(shù)的圖象交于點D,過點D且垂直于x軸的直線交直線CB與點M,求△BMD的面積.

解:(1)∵二次函數(shù)y=x2+bx+3的圖象過x軸上點A(1,0),
∴1+b+3=0,解得b=-4,
∴此二次函數(shù)的解析式為:y=x2-4x+3,
∵二次函數(shù)y=x2-4x+3可化為y=(x-2)2-1的形式,
∴P(2,-1);

(2)∵由(1)可知,二次函數(shù)的解析式為:y=x2-4x+3,
∴C(0,3),B(3,0)
∵CD∥x軸,
∴C、D兩點縱坐標(biāo)相同,
∴D(4,3),
設(shè)直線BC的解析式為:y=kx+b(k≠0),
解得,
∴直線BC的解析式為:y=-x+3,
∵DM⊥x軸,D(4,3)
∴M(4,-1),N(4,0)
∴S△BMD=S△CDM-S△BMD=DM•CD-CD•OC=×(3+1)×4-×4×3=2.
答:△BMD的面積是2.
分析:(1)直接把點A(1,0)代入二次函數(shù)y=x2+bx+3即可求出b的值,進而得出其解析式,由二次函數(shù)的頂點式即可求出其頂點坐標(biāo);
(2)先根據(jù)(1)中二次函數(shù)的解析式求出B、D兩點的坐標(biāo),用待定系數(shù)法求出直線BC的解析式,由此可得出M點的坐標(biāo),根據(jù)S△BMD=S△CDM-S△BMD即可得出結(jié)論.
點評:本題考查的是二次函數(shù)綜合題,涉及到二次函數(shù)圖象上點的坐標(biāo)特點、用待定系數(shù)法求一次函數(shù)的解析式及三角形的面積,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)圖象的頂點坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點,其中A點坐標(biāo)為(
5
2
13
4
),B點在y軸上,直線與x軸的交點為F,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于E點.
(1)求k,m的值及這個二次函數(shù)的解析式;
(2)設(shè)線段PE的長為h,點P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在點P,使得以點P、E、D為頂點的精英家教網(wǎng)三角形與△BOF相似?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點A(-1,0)和點B(3,0)兩點(點A在點B的左邊),與y軸交于點C.
(1)求此二次函數(shù)的解析式,并寫出它的對稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出點D的坐標(biāo);若不存在,請說明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點坐標(biāo)為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點,其中點A的坐標(biāo)為(3,4),點B在y軸上.點P為線段AB上的一個動點(點P與A、B不重合),過點P作x軸的垂線與該二次函數(shù)的圖象交于點E.
(1)求b的值及這個二次函數(shù)的關(guān)系式;
(2)設(shè)線段PE的長為h,點P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若點D為直線AB與該二次函數(shù)的圖象對稱軸的交點,則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請求出此時P點的坐標(biāo);如果不能,請說明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請求出點P的坐標(biāo);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標(biāo)軸交于點A(-1,0)和點C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個交點B的坐標(biāo).
(2)在上面所求二次函數(shù)的對稱軸上存在一點P(2,-2),連接OP,找出x軸上所有點M的坐標(biāo),使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點為D,在y軸上是否存在一點P,使得△PAD的周長最?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案