OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=10,OC=6.
(1)如圖,在AB上取一點(diǎn)M,使得△CBM沿CM翻折后,點(diǎn)B落在x軸上,記作B'點(diǎn).求B'點(diǎn)的坐標(biāo);
(2)求折痕CM所在直線的解析式;
(3)作B'G∥AB交CM于點(diǎn)G,若拋物線y=x2+m過點(diǎn)G,求拋物線的解析式,并判斷以原點(diǎn)O為圓心,OG為半徑的圓與拋物線除交點(diǎn)G外,是否還有交點(diǎn)?若有,請(qǐng)直接寫出交點(diǎn)的坐標(biāo).

【答案】分析:(1)求B′的坐標(biāo)就是求OB′的長(zhǎng),也就要知道CB′的長(zhǎng),而根據(jù)折疊的性質(zhì)可知CB′=CB,而四邊形OCBA是矩形,可得出CB=OA,、,也就得出了CB′=OA,即可求出OB′的長(zhǎng),也就求出了B′的坐標(biāo);
(2)求CM所在直線的解析式,根據(jù)OC的長(zhǎng)可得出C的坐標(biāo),關(guān)鍵是求M點(diǎn)的坐標(biāo),M的橫坐標(biāo)與A的橫坐標(biāo)相同,那么就要求出M的縱坐標(biāo)即AM的長(zhǎng),(1)中已求得了OB′的長(zhǎng),也就求出了AB′的長(zhǎng),可用AM表示出MB也就是MB′的長(zhǎng),然后在直角三角形AB′M中用勾股定理求出AM的長(zhǎng),也就得出了M的坐標(biāo),然后用待定系數(shù)法求出CM所在直線的解析式.
(3)(1)中已經(jīng)求得了OB′的長(zhǎng),也就是G的橫坐標(biāo),然后代入CM所在直線的解析式中求出G點(diǎn)的坐標(biāo),然后代入拋物線的解析式中求出m的值,即可得出拋物線的解析式.根據(jù)拋物線和圓的對(duì)稱性可得出拋物線與圓的另外一個(gè)交點(diǎn)就應(yīng)該是G關(guān)于y軸的對(duì)稱點(diǎn).
解答:解:(1)∵△CB'M≌△CBM
∴CB'=CB=OA=10
∴OB'==8
∴B'(8,0);

(2)設(shè)AM=n,則MB'=BM=6-n
AB'=10-8=2
∴n2+22=(6-n)2
解得n=
∴M(10,)、C(0,6)
設(shè)直線CM解析式為y=kx+b

解得
∴直線CM的解析式為y=-x+6;

(3)設(shè)G(8,a)
∴a=-×8+6=
∴G(8,
+m
∴m=-
∴y=x2-
除交點(diǎn)G外,另有交點(diǎn)為點(diǎn)G關(guān)于y軸的對(duì)稱點(diǎn).
其坐標(biāo)為(-8,).
點(diǎn)評(píng):本題主要考查了折疊的性質(zhì),矩形的性質(zhì),一次函數(shù)的應(yīng)用,以及用待定系數(shù)法求二次函數(shù)解析式等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=4.
(1)在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求D,E兩點(diǎn)的坐標(biāo);
(2)如圖2,若AE上有一動(dòng)點(diǎn)P(不與A,E重合)自A點(diǎn)沿AE方向E點(diǎn)勻速運(yùn)動(dòng),運(yùn)動(dòng)的速度為每秒1個(gè)單位長(zhǎng)度,設(shè)運(yùn)動(dòng)的時(shí)間為t秒(0<t<5),過P點(diǎn)作ED的平行線交AD于點(diǎn)M,過點(diǎn)M作AE平行線交DE于點(diǎn)N.求四邊形PMNE的面積S與時(shí)間t之間的函數(shù)關(guān)系式;當(dāng)t取何值時(shí),s有最大值,最大值是多少?
(3)在(2)的條件下,當(dāng)t為何值時(shí),以A,M,E為頂點(diǎn)的三角形為等腰三角形,并求出相應(yīng)的時(shí)刻點(diǎn)M的坐標(biāo)?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形OABC是一張放在平面直角坐標(biāo)系的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=15,OC=9,在AB上取一點(diǎn)M,使得△CBM沿CM翻折后,點(diǎn)B落在x軸上,記作N點(diǎn).
(1)求N點(diǎn)、M點(diǎn)的坐標(biāo);
(2)將拋物線y=x2-36向右平移a(0<a<10)個(gè)單位后,得到拋物線l,l經(jīng)過點(diǎn)N,求拋物線l的解析式;
(3)①拋物線l的對(duì)稱軸上存在點(diǎn)P,使得P點(diǎn)到M、N兩點(diǎn)的距離之差最大,求P點(diǎn)的坐標(biāo);
②若點(diǎn)D是線段OC上的一個(gè)動(dòng)點(diǎn)(不與O、C重合),過點(diǎn)D作DE∥OA交CN于E,設(shè)CD的長(zhǎng)為m,△PDE的面積為S,求S與m之間的函數(shù)關(guān)系式,并說明S是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=10,OC=6.
(1)如圖,在AB上取一點(diǎn)M,使得△CBM沿CM翻折后,點(diǎn)B落在x軸上,記作B′點(diǎn).求B′點(diǎn)的坐標(biāo);
(2)求折痕CM所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且線段OA、OC(OA>OC)是方程x2-18x+80=0的兩根,將邊BC折疊,使點(diǎn)B落在邊OA上的點(diǎn)D處.
(1)求線段OA、OC的長(zhǎng);
(2)求直線CE與x軸交點(diǎn)P的坐標(biāo)及折痕CE的長(zhǎng);
(3)是否存在過點(diǎn)D的直線l,使直線CE與x軸所圍成的三角形和直線l、直線CE與y軸所圍成精英家教網(wǎng)的三角形相似?如果存在,請(qǐng)直接寫出其解析式并畫出相應(yīng)的直線;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,則D點(diǎn)的坐標(biāo)是
(0,5)
(0,5)

查看答案和解析>>

同步練習(xí)冊(cè)答案