【題目】如圖1是一種簡易的手機架,將其結(jié)構(gòu)簡化為圖2,由靠板,底座和頂板組成,測得,,,,,.
(1)求手機架的高(點到的距離);
(2)請通過計算確定厚度為的手機放置在手機架上能否有調(diào)節(jié)角度的空間.
(參考數(shù)據(jù):,,,,結(jié)果精確到0.1)
【答案】(1)手機架的高為14.3;(2)厚度為0.5的手機放置在手機架上有調(diào)節(jié)角度的空間
【解析】
(1)根據(jù)手機架的形狀畫出數(shù)學模型圖,手機的高度即為線段的長度,而線段,由,可以求出,而作為的外角可以求出,,則 ,,由此便可求出手機的高度即的長;
(2)作于點,根據(jù)三角函數(shù)求出的長度,結(jié)合已知條件求出的長度,再根據(jù)三角函數(shù)求出的長度,用的長度和進行比較,若大于,則可以調(diào)節(jié),若小于,則不能調(diào)節(jié);
解:(1)延長交于點,作于點,作于點,
,
.
.
.
∴手機架的高為.
(2)作于點,
,,
,.
.
.
.
,
∴厚度為0.5的手機放置在手機架上有調(diào)節(jié)角度的空間.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°
(1)若BD=2,CE=4,則DE=_____.
(2)若∠AEB=75°,則線段BD與CE的數(shù)量關(guān)系是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2013年5月31日是第26個“世界無煙日”,校學生會書記小明同學就“戒煙方式”的了解程度對本校九年級學生進行了一次隨機問卷調(diào)查,如圖是他采集數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖(A:了解較多,B:不了解,C:了解一點,D:非常了解).請你根據(jù)圖中提供的信息解答以下問題:
(1)在扇形統(tǒng)計圖中的橫線上填寫缺失的數(shù)據(jù),并把條形統(tǒng)計圖補充完整.
(2)2013年該初中九年級共有學生400人,按此調(diào)查,可以估計2013年該初中九年級學生中對戒煙方式“了解較多”以上的學生約有多少人?
(3)在問卷調(diào)查中,選擇“A”的是1名男生,1名女生,選擇“D”的有4人且有2男2女.校學生會要從選擇“A、D”的問卷中,分別抽一名學生參加活動,請你用列表法或樹狀圖求出恰好是一名男生一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,BC=2AB,E,F分別是BC,AD的中點,AE,BF交于點O,連接EF,OC.
(1)求證:四邊形ABEF是菱形;(2)若BC=8,∠ABC=60°,求OC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,,,設(shè),.
(1)如圖1,當點在內(nèi),
①若,求的度數(shù);
小明同學通過分析已知條件發(fā)現(xiàn):是頂角為的等腰三角形,且,從而容易聯(lián)想到構(gòu)造一個頂角為的等腰三角形.于是,他過點作,且,連接,發(fā)現(xiàn)兩個不同的三角形全等:_____________再利用全等三角形及等腰三角形的相關(guān)知識可求出的度數(shù)
請利用小王同學分析的思路,通過計算求得的度數(shù)為_____;
②小王在①的基礎(chǔ)上進一步進行探索,發(fā)現(xiàn)之間存在一種特殊的等量關(guān)系,請寫出這個等量關(guān)系,并加以證明.
(2)如圖2,點在外,那么之間的數(shù)量關(guān)系是否改變?若改變,請直接寫出它們的數(shù)量關(guān)系;若不變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了維護每個學生平等接受教育的權(quán)利,我區(qū)小學多年來遵照“就近劃片入學”原則實行陽光招生,電腦隨機分班,分班時對所有學生一視同仁.小紅和小蘭兩個女孩是鄰居,今年夏天被劃分到城區(qū)的同一所小學,這所學校一年級有1班、2班、3班、4班共四個班.下面是分班前兩個女孩家長的一段對話:
小紅媽媽說:“真希望她倆能分到同一個班.”
小蘭媽媽說:“她倆可能分到同一個班,也可能分不到同一個班,所以她倆分到同一個班的可能性是50%.”
請你用所學的知識分析小蘭媽媽的說法是否正確,如正確,請說明理由;如不正確請用列表或畫樹狀圖的方法求出小紅和小蘭分到同一個班的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在13×13的網(wǎng)格圖中,已知△ABC和點M(1,2).
(1)以點M為位似中心,畫出△ABC的位似圖形△A′B′C′,其中△A′B′C′與△ABC的位似比為2;
(2)寫出△A′B′C′的各頂點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)模型探究:如圖1,、、分別為三邊、、上的點,且,與相似嗎?請說明理由.
(2)模型應用:為等邊三角形,其邊長為,為邊上一點,為射線上一點,將沿翻折,使點落在射線上的點處,且.
①如圖2,當點在線段上時,求的值;
②如圖3,當點落在線段的延長線上時,求與的周長之比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,某超市從一樓到二樓有一自動扶梯,圖2是側(cè)面示意圖.已知自動扶梯AB的坡度為1:2.4,AB的長度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動扶梯頂端B點正上方的一點,BC⊥MN,在自動扶梯底端A處測得C點的仰角為42°,求二樓的層高BC約為多少米?( sin42°≈0.7,tan42°≈0.9)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com