【題目】如圖,ABO的直徑,射線BCO于點(diǎn)D,E是劣弧AD上一點(diǎn),且,過(guò)點(diǎn)EEFBC于點(diǎn)F,延長(zhǎng)FEBA的延長(zhǎng)線交與點(diǎn)G

1)證明:GFO的切線;

2)若AG6,GE6,求△GOE的面積.

【答案】(1)詳見解析;(2)9

【解析】

1連接OE,由 知∠1=2,由∠2=3可證OEBF,根據(jù)BFGFOEGF,即可得證;

(2)設(shè)OAOEr,在RtGOE中,由勾股定理求得r3,即OE=3,再根據(jù)三角形的面積公式得解.

解:(1)如圖,連接OE,

,

∴∠1=∠2,

∵∠2=∠3,

∴∠1=∠3,

OEBF,

BFGF,

OEGF

GFO的切線;

2)設(shè)OAOEr,

RtGOE中,∵AG6,GE6 ,

∴由OG2GE2+OE2可得(6+r2=(62+r2,

解得:r3

OE3,

SGOEOEGE×3×9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AD為⊙O的直徑,ADBC相交于點(diǎn)E,且BECE

1)請(qǐng)判斷ADBC的位置關(guān)系,并說(shuō)明理由;

2)若BC6ED2,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過(guò)網(wǎng)格點(diǎn)AB、C,請(qǐng)?jiān)诰W(wǎng)格中進(jìn)行下列操作:

1)請(qǐng)?jiān)趫D中確定該圓弧所在圓心D點(diǎn)的位置,D點(diǎn)坐標(biāo)為   ;

2)連接ADCD,則⊙D的半徑為   ;扇形DAC的圓心角度數(shù)為   ;

3)若扇形DAC是某一個(gè)圓錐的側(cè)面展開圖,求該圓錐的底面半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,對(duì)角線AC⊥BD,且AC=8,BD=4,各邊中點(diǎn)分別為A1、B1、C1、D1,順次連接得到四邊形A1B1C1D1,再取各邊中點(diǎn)A2、B2、C2、D2,順次連接得到四邊形A2B2C2D2,…,依此類推,這樣得到四邊形AnBnCnDn,則四邊形AnBnCnDn的面積為(

A. B. C. D. 不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,E是CD的延長(zhǎng)線上一點(diǎn),BE與AD交于點(diǎn)F,CD=2DE.若△DEF的面積為a,則平行四邊形ABCD的面積為  ▲  (用a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線ly=﹣x+8x軸于點(diǎn)E,點(diǎn)Ax軸上的一個(gè)動(dòng)點(diǎn)(點(diǎn)A不與點(diǎn)E重合),在直線l上取一點(diǎn)B(點(diǎn)Bx軸上方),使BE5AE,連接AB,以AB為邊沿順時(shí)針方向作正方形ABCD,連結(jié)OB,以OB為直徑作P

1)當(dāng)點(diǎn)A在點(diǎn)E右側(cè)時(shí).

若點(diǎn)B剛好落在y軸上,則線段BE的長(zhǎng)為  ,點(diǎn)D的坐標(biāo)為   

若點(diǎn)A的坐標(biāo)為(9,0),求正方形ABCD的邊長(zhǎng).

2P與正方形ABCD的邊相切于點(diǎn)B,求點(diǎn)B的坐標(biāo).

3)點(diǎn)QP與直線BE的交點(diǎn),連接CQ,當(dāng)CQ平分∠BCD時(shí),點(diǎn)B的坐標(biāo)為   .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線過(guò)點(diǎn),,與y軸交于點(diǎn)C,連接AC,BC,將沿BC所在的直線翻折,得到,連接OD

1)用含a的代數(shù)式表示點(diǎn)C的坐標(biāo).

2)如圖1,若點(diǎn)D落在拋物線的對(duì)稱軸上,且在x軸上方,求拋物線的解析式.

3)設(shè)的面積為S1,的面積為S2,若,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店銷售一種兒童玩具,進(jìn)價(jià)為每件30元,物價(jià)部門規(guī)定每件兒童玩具的銷售利潤(rùn)不高于進(jìn)價(jià)的.在銷售過(guò)程中發(fā)現(xiàn),這種兒童玩具每天的銷售量(件與銷售單價(jià)(元滿足一次函數(shù)關(guān)系.當(dāng)銷售單價(jià)為35元時(shí),每天的銷售量為350件;當(dāng)銷售單價(jià)為40元時(shí),每天的銷售量為300件.

1)求之間的函數(shù)關(guān)系式.

2)當(dāng)銷售單價(jià)為多少時(shí),該網(wǎng)店銷售這種兒童玩具每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用適當(dāng)?shù)姆椒ń夥匠獭?/span>

14(x-3) =36

2x2-4x10.

3-7x+6=0

4

5(y1)22y(1y)0.

查看答案和解析>>

同步練習(xí)冊(cè)答案