【題目】如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線交CE的延長線于點(diǎn)F,且AF=BD,連接BF.
(1)線段BD與CD有什么數(shù)量關(guān)系,并說明理由;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形AFBD是矩形?并說明理由.
【答案】(1)BD=CD.理由見解析;(2)當(dāng)△ABC滿足:AB=AC時(shí),四邊形AFBD是矩形.理由見解析.
【解析】
試題分析:(1)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等求出∠AFE=∠DCE,然后利用“角角邊”證明△AEF和△DEC全等,根據(jù)全等三角形對應(yīng)邊相等可得AF=CD,再利用等量代換即可得證;
(2)先利用一組對邊平行且相等的四邊形是平行四邊形證明四邊形AFBD是平行四邊形,再根據(jù)一個(gè)角是直角的平行四邊形是矩形,可知∠ADB=90°,由等腰三角形三線合一的性質(zhì)可知必須是AB=AC.
試題解析:(1)BD=CD.
理由如下:依題意得AF∥BC,
∴∠AFE=∠DCE,
∵E是AD的中點(diǎn),
∴AE=DE,
在△AEF和△DEC中,
,
∴△AEF≌△DEC(AAS),
∴AF=CD,
∵AF=BD,
∴BD=CD;
(2)當(dāng)△ABC滿足:AB=AC時(shí),四邊形AFBD是矩形.
理由如下:∵AF∥BD,AF=BD,
∴四邊形AFBD是平行四邊形,
∵AB=AC,BD=CD(三線合一),
∴∠ADB=90°,
∴AFBD是矩形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小明解一元二次方程(x-5)2=3(x-5)的過程:
解:方程兩邊都除以(x-5),得x-5=3,
解得x=8.
小明的解題過程是否正確,如果正確請說明理由;如果不正確,請寫出正確的解題過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某書店把一本新書按標(biāo)價(jià)的九折出售,仍可獲利20%.若該書的進(jìn)價(jià)為21元,則標(biāo)價(jià)為____ 元;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用作位似圖形的方法,可以將一個(gè)圖形放大或縮小,位似中心的位置可選在( )
A. 原圖形的外部 B. 原圖形的內(nèi)部 C. 原圖形的邊上 D. 任意位置
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)據(jù)840000000厘米表示正確的為( )
A. 84萬米 B. 840千米 C. 8.4億厘米 D. 8400萬厘米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC,∠A=36°,以點(diǎn)A為位似中心把△ABC的各邊放大2倍后得到△AB′C′,則∠B的對應(yīng)角∠B′的度數(shù)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)幾何體的三個(gè)視圖是兩個(gè)同樣大小的長方形和一個(gè)直徑等于長方形一邊長的圓,這個(gè)幾何體是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD內(nèi)接于⊙O,M為中點(diǎn),連接BM,CM.
(1)求證:BM=CM;
(2)當(dāng)⊙O的半徑為2時(shí),求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com