【題目】正常人的體溫一般在37℃左右,但一天中的不同時刻不盡相同圖反映了一天24小時內(nèi)小明體溫的變化情況:

(1)什么時間體溫最低?什么時間體溫最高?最低和最高體溫各是多少?

(2)一天中小明體溫T(單位:℃)的范圍是多少.

(3)哪段時間小明的體溫在上升,哪段時間體溫在下降.

(4)請你說一說小明一天中體溫的變化情況.

【答案】(1)5時最低,17時最高,最低氣溫為36.5℃,最高氣溫為37.5℃.(2)36.5℃至37.5℃之間.(3)5時至17時體溫上升,0時至5時和17時至24時體溫在下降.(4)見解析

【解析】

1)根據(jù)圖象進行作答即可;

2)根據(jù)圖象進行作答即可;

3)根據(jù)圖象進行作答即可;

4)根據(jù)圖象進行作答即可.

(1)5時最低,17時最高,最低氣溫為36.5℃,最高氣溫為37.5℃.

(2)36.5℃至37.5℃之間.

(3)5時至17時體溫上升,0時至5時和17時至24時體溫在下降.

(4)凌晨0至5時,小明體溫在下降,5時體溫最低是36.5℃;5至17時,小明體溫在上升,17時體溫最高是37.5℃;17至24時,小明體溫在下降.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC和△A'B'C'關(guān)于直線m對稱.

(1)結(jié)合圖形指出對稱點;

(2)若連接AA',直線m與線段AA'有什么關(guān)系?

(3)BC與B'C'的交點,AB與A'B'的交點分別與直線m有怎樣的關(guān)系?若延長AC與A'C',其交點與直線m有怎樣的關(guān)系?你發(fā)現(xiàn)了什么規(guī)律?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AD=3,∠CAB=30°,點P是線段AC上的動點,點Q是線段CD上的動點,則AQ+QP的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,鐵路上A、B兩點相距25km,CD為兩村莊,DAABA,CBABB,已知DA15kmCB10km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C、D兩村到E站的距離相等,則E站應建在距A站多少千米處?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,分別以直角三角形ABC三邊為直徑向外作三個半圓,其面積分別用S1、S2、S3表示,則不難證明S1=S2+S3 .

(1) 如圖②,分別以直角三角形ABC三邊為邊向外作三個正方形,其面積分別用S1、S2、S3表示,那么S1、S2、S3之間有什么關(guān)系?(不必證明)

(2) 如圖③,分別以直角三角形ABC三邊為邊向外作三個正三角形,其面積分別用S1、S2、S3表示,請你確定S1、S2、S3之間的關(guān)系并加以證明;

(3) 若分別以直角三角形ABC三邊為邊向外作三個正多邊形,其面積分別用S1、S2、S3表示,請你猜想S1、S2、S3之間的關(guān)系?.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a、b、c滿足|a﹣|++(c﹣42=0.

(1)求a、b、c的值;

(2)判斷以a、b、c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知網(wǎng)格上最小的正方形的邊長為1,

1)作△ABC關(guān)于軸的對稱圖形△ABC(不寫做法),并寫出ABC'的坐標,想一想:關(guān)于軸對稱的兩個點之間有什么關(guān)系?

2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知直線相交于,,射線位置起始,繞點逆時針旋轉(zhuǎn),終邊與始邊形成的角度為.

問題1:若逆時針旋轉(zhuǎn)停止,則

1__________________時,平分;

2__________________時,;

3__________________時,;

問題2:若逆時針旋轉(zhuǎn)的速度為每秒,在勻速旋轉(zhuǎn)的同時,直線也從圖的位置開始繞點逆時針勻速旋轉(zhuǎn),旋轉(zhuǎn)速度為每秒,當完成旋轉(zhuǎn)一周時,也同時停止旋轉(zhuǎn).設旋轉(zhuǎn)時間為)秒.

1)旋轉(zhuǎn)時間為多少時,射線重合.請寫出求解過程.

2)觀察旋轉(zhuǎn)全過程,判斷旋轉(zhuǎn)時間為多少時,射線平分.請直接寫出的值.(注:指大于且小于的角)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線EF,CD相交于點0,OA⊥OB,且OC平分∠AOF,

(1)若∠AOE=40°,求∠BOD的度數(shù);

(2)若∠AOE=α,求∠BOD的度數(shù);(用含α的代數(shù)式表示)

(3)從(1)(2)的結(jié)果中能看出∠AOE和∠BOD有何關(guān)系?

查看答案和解析>>

同步練習冊答案