【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖像都經(jīng)過點(diǎn),且為雙曲線上的一點(diǎn),為坐標(biāo)平面上一動點(diǎn),垂直于軸,垂直于軸,垂足分別是.

1)寫出正比例函數(shù)和反比例函數(shù)的關(guān)系式.

2)當(dāng)點(diǎn)在直線上運(yùn)動時,直線上是否存在這樣的點(diǎn),使得的面積相等?如果存在,請求出點(diǎn)的坐標(biāo);如果不存在,請說明理由.

【答案】1)正比例函數(shù)的解析式為,反比例函數(shù)的解析式為;

2)在直線上存在這樣的點(diǎn),使得面積相等.

【解析】

1)用待定系數(shù)法進(jìn)行求解,即可得到正比例函數(shù)和反比例函數(shù)的關(guān)系式;

2)當(dāng)點(diǎn)Q在直線MO上運(yùn)動時,假設(shè)在直線MO上存在這樣的點(diǎn)Qx,x),使得△OBQ與△OAP面積相等,則B0x).根據(jù)三角形的面積公式列出關(guān)于x的方程,解方程即可.

1)設(shè)反比例函數(shù)的解析式為,正比例函數(shù)的解析式為.

∵正比例函數(shù)和反比例函數(shù)的圖像都經(jīng)過點(diǎn),∴,. .

∴正比例函數(shù)的解析式為,反比例函數(shù)的解析式為.

2)當(dāng)點(diǎn)在直線上運(yùn)動時,假設(shè)在直線上存在這一的點(diǎn),使得面積相等,則.

,∴,解得.

當(dāng)時,. 當(dāng)時,.

故在直線上存在這樣的點(diǎn),使得面積相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖 1,在中,,連接 的延長線于點(diǎn).則的值是____________

問題解決:如圖 2,在問題背景的條件下,將繞點(diǎn)在平面內(nèi)旋轉(zhuǎn),點(diǎn)始終在的外部,所在直線交于點(diǎn),若,當(dāng)點(diǎn)與點(diǎn)重合時,的長是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,OA=4,OC=3,分別以OC、OA所在的直線為x軸、y軸,建立如圖所示的坐標(biāo)系,連接OB,反比例函數(shù)y=(x0)的圖象經(jīng)過線段OB的中點(diǎn)D,并與矩形的兩邊交于點(diǎn)E和點(diǎn)F,直線ly=kx+b經(jīng)過點(diǎn)E和點(diǎn)F

1)寫出中點(diǎn)D的坐標(biāo)     ,并求出反比例函數(shù)的解析式;

2)連接OE、OF,求OEF的面積;

3)如圖,將線段OB繞點(diǎn)O順時針旋轉(zhuǎn)一定角度,使得點(diǎn)B的對應(yīng)點(diǎn)H恰好落在x軸的正半軸上,連接BH,作OMBH,點(diǎn)N為線段OM上的一個動點(diǎn),求HN+ON的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A(﹣2,1),B1,n)兩點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)根據(jù)圖象寫出使一次函數(shù)的值>反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于點(diǎn)A(1, 0),B(-7, 0),頂點(diǎn)D坐標(biāo)為(-3,),點(diǎn)Cy軸的正半軸上,CDx軸于點(diǎn)F,CAD繞點(diǎn)C順時針旋轉(zhuǎn)得到CFE,點(diǎn)A恰好旋轉(zhuǎn)到點(diǎn)F,連接BE.過頂點(diǎn)DDD1x軸于點(diǎn)D1

(1)求拋物線的表達(dá)式

(2)求證:四邊形BFCE是平行四邊形.

(3)點(diǎn)P是拋物線上一動點(diǎn),當(dāng)PB點(diǎn)左側(cè)時,過點(diǎn)PPM⊥x,點(diǎn)M為垂足,請問是否存在P點(diǎn)使得PAMDD1A相似,如果存在,請寫出點(diǎn)P的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線,是常數(shù),)經(jīng)過點(diǎn)A,)和點(diǎn)B ,),且拋物線的對稱軸在軸的左側(cè). 下列結(jié)論: 方程 有兩個不等的實數(shù)根; . 其中,正確結(jié)論的個數(shù)是( .

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個種子店都銷售“黃金1號”玉米種子.在甲店,該種子的價格為 5 / kg,如果一次購買2 kg 以上的種子,超過 2 kg 部分的種子的價格打8折.在乙店,不論一次購買該種子的數(shù)量是多少,價格均為4.5 / kg

1)根據(jù)題意,填寫下表:

2)設(shè)一次購買種子的數(shù)量為 kg. 在甲店購買的付款金額記為元,在乙店購買的付款金額為元,分別求關(guān)于的函數(shù)解析式;

3 若在同一店中一次購買種子的付款金額是36元,則最多可購買種子______ kg.若在同一店中一次購買種子10 kg,則最少付款金額是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸交于、兩點(diǎn),與反比例函數(shù)的圖像交于點(diǎn),且

1)求反比例函數(shù)的解析式;

2)點(diǎn)是直線上一點(diǎn),過點(diǎn)軸的平行線交反比例函數(shù)的圖像于,兩點(diǎn),連,,當(dāng)時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)為直線上一點(diǎn),點(diǎn)延長線上一點(diǎn),且,連接

求證:

當(dāng)時,求的度數(shù);

點(diǎn)的外心,當(dāng)點(diǎn)在直線上運(yùn)動,且點(diǎn)恰好在內(nèi)部或邊上時,直接寫出點(diǎn)運(yùn)動的路徑的長,

查看答案和解析>>

同步練習(xí)冊答案