【題目】如圖,點(diǎn)C在線段BD上,AC⊥BD,CA=CD,點(diǎn)E在線段CA上,且滿足DE=AB,連接DE并延長(zhǎng)交AB于點(diǎn)F.
(1)求證:DE⊥AB;
(2)若已知BC=a,AC=b,AB=c,設(shè)EF=x,則△ABD的面積用代數(shù)式可表示為;S△ABD= c(c+x)你能借助本題提供的圖形,證明勾股定理嗎?試一試吧.
【答案】
(1)證明:在Rt△ABC和Rt△DCE中,
∴Rt△ABC≌Rt△DCE(HL)
∴∠BAC=∠EDC(全等三角形的對(duì)應(yīng)角相等),
∵∠AEF=∠DEC(對(duì)頂角相等),∠EDC+∠DEC=90°(直角三角形兩銳角互余),
∴∠BAC+∠AEF=∠EDC+∠DEC=90°.
∴∠AFE=180°﹣(∠BAC+∠AEF)=90°.
∴DE⊥AB
(2)解:由題意知:
S△ABD=S△BCE+S△ACD+S△ABE= a2+ b2+ cx,
∵ ,
∴ .
∴a2+b2=c2
【解析】(1)首先證明Rt△ABC≌Rt△DCE,得出∠BAC=∠EDC,進(jìn)而求出∠AFE=180°﹣(∠BAC+∠AEF)=90°,即可得出答案;(2)根據(jù)S△ABD=S△BCE+S△ACD+S△ABE , 得出a2+b2=c2即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究規(guī)律:如圖,已知直線m∥n,A、B為直線n上的兩點(diǎn),C、P為直線m上的兩點(diǎn).
(1)請(qǐng)寫出圖中面積相等的各對(duì)三角形: .
(2)如果A、B、C為三個(gè)定點(diǎn),點(diǎn)P在m上移動(dòng),那么無論P(yáng)點(diǎn)移動(dòng)到任何位置總有:與△ABC的面積相等;理由是: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程x2-9x+18=0的兩個(gè)根是等腰三角形的底和腰,則這個(gè)三角形的周長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列算式:1×5+4=32 , 2×6+4=42 , 3×7+4=52 , 4×8+4=62 , 請(qǐng)你在觀察規(guī)律之后并用你得到的規(guī)律填空:× +=502 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于E , BE交CD于點(diǎn)F , ∠1+∠2=90°.
(1)試說明:AB∥CD;
(2)若∠2=25°,求∠BFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王計(jì)劃用100元錢買乒乓球,所購(gòu)買球的個(gè)數(shù)為W個(gè),每個(gè)球的單價(jià)為n元,其中( )
A. 100是常量,W,n是變量 B. 100,W是常量,n是變量
C. 100,n是常量,W是變量 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由實(shí)驗(yàn)測(cè)得某一彈簧的長(zhǎng)度y(cm)與懸掛物體的質(zhì)量x(kg)之間有如下關(guān)系:y= —12+0.5x.下列說法正確的是( )
A. 變量是x,常量是12,0.5 B. 變量是x,常量是-12,0.5
C. 變量是x,y,常量是12,0.5 D. 變量是x,y,常量是-12,0.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知射線AB與直線CD交于點(diǎn)O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.
(1)求∠DOF的度數(shù);
(2)試說明OD平分∠AOG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( 。
A. x2x2=x6B. x4﹣x=x2
C. ﹣(x﹣y)=﹣x+yD. 3x2x=6x
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com