【題目】在某班“講故事”比賽中有一個抽獎活動,活動規(guī)則是:只有進(jìn)入最后決賽的甲、乙、丙三位同學(xué),每人才能獲得一次抽獎機(jī)會.在如圖所示的翻獎牌正面的4個數(shù)字中選一個數(shù)字,選中后就可以得到該數(shù)字后面的相應(yīng)獎品:前面的人選中的數(shù)字,后面的人就不能再選擇數(shù)字了.
(1)請用樹狀圖(或列表)的方法求甲、乙二人得到的獎品都是計(jì)算器的概率.
(2)有的同學(xué)認(rèn)為,如果甲先翻獎牌,那么他得到籃球的概率會大些,這種說法正確嗎?請說明理由.
【答案】(1);(2)這種說法是不正確的.理由見解析.
【解析】
試題分析:(1)首先畫樹形圖可知:一共有24種情況,甲、乙二人都得到計(jì)算器共有2種情況除以總情況數(shù)即為所求概率;
(2)根據(jù)(1)中的樹形圖,分別求出甲、乙、丙得到籃球的概率即可.
試題解析:(1)所有獲獎情況的樹狀圖如下:
共有24種可能的情況,其中甲、乙二人都得到計(jì)算器共有4種情況,
所以,甲、乙二人都得計(jì)算器的概率為:P=;
(2)這種說法是不正確的.由上面的樹狀圖可知共有24種可能情況:
甲得到籃球有六種可能情況:P(甲)=,
乙得到籃球有六種可能情況:P(乙)=,
丙得到籃球有六種可能情況:P(丙)=,
所以甲、乙、丙三人不管誰先翻獎牌得到籃球的概率都相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的頂點(diǎn)A、C分別在、的正半軸上,反比例函數(shù)()與矩形的邊AB、BC交于點(diǎn)D、E.
(1)若,則的面積為_________;
(2)若D為AB邊中點(diǎn).
①求證:E為BC邊中點(diǎn);
②若的面積為4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=5cm,∠ADC=120°,點(diǎn)E、F同時由A、C兩點(diǎn)出發(fā),分別沿AB.CB方向向點(diǎn)B勻速移動(到點(diǎn)B為止),點(diǎn)E的速度為1cm/s,點(diǎn)F的速度為2cm/s,經(jīng)過t秒△DEF為等邊三角形,則t的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)填在相應(yīng)的大括號里:
1,﹣,8.9,﹣7, ,﹣3.2,+1 008,﹣0.06,28,﹣9.
正整數(shù)集合:{______…};
負(fù)整數(shù)集合:{______…};
正分?jǐn)?shù)集合:{______…};
負(fù)分?jǐn)?shù)集合:{______…}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店準(zhǔn)備進(jìn)行裝修,若請甲、乙兩個裝修隊(duì)同時施工,8天完成,需付兩隊(duì)共3520元費(fèi)用;若先請甲隊(duì)單獨(dú)做6天,再請乙隊(duì)單獨(dú)做12天可以完成,需付兩隊(duì)共3480元費(fèi)用。
(1)甲、乙兩隊(duì)工作一天,商場各應(yīng)付多少元?
(2)單獨(dú)請哪個隊(duì)裝修,商場所付費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠計(jì)劃在規(guī)定時間內(nèi)生產(chǎn)24000個零件.由于銷售商突然急需供貨,工廠實(shí)際工作效率比原計(jì)劃提高了50%,并提前5天完成這批零件的生產(chǎn)任務(wù).求該工廠原計(jì)劃每天加工這種零件多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題:已知:如圖,,.求證:.
老師要求學(xué)生在完成這道教材上的題目證明后,嘗試對圖形進(jìn)行變形,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?
(1)小穎首先完成了對這道題的證明,在證明過程中她用到了平行線的一條性質(zhì),小穎用到的平行線性質(zhì)可能是 .
(2)接下來,小穎用《幾何畫板》對圖形進(jìn)行了變式,她先畫了兩條平行線,然后在平行線間畫了一點(diǎn),連接后,用鼠標(biāo)拖動點(diǎn),分別得到了圖,小穎發(fā)現(xiàn)圖正是上面題目的原型,于是她由上題的結(jié)論猜想到圖和圖中的與之間也可能存在著某種數(shù)量關(guān)系.于是她利用《幾何畫板》的度量與計(jì)算功能,找到了這三個角之間的數(shù)量關(guān)系.
請你在小穎操作探究的基礎(chǔ)上,繼續(xù)完成下面的問題:
(。┎孪雸D中與之間的數(shù)量關(guān)系并加以證明;
(ⅱ)補(bǔ)全圖,直接寫出與之間的數(shù)量關(guān)系: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,∠ABC與∠ACB的平分線相交于點(diǎn)P.
(1)如果∠A=80°,求∠BPC的度數(shù);
(2)如圖②,作△ABC外角∠MBC,∠NCB的角平分線交于點(diǎn)Q,試探索∠Q、∠A之間的數(shù)量關(guān)系.
(3)如圖③,延長線段BP、QC交于點(diǎn)E,△BQE中,存在一個內(nèi)角等于另一個內(nèi)角的2倍,求∠A的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com