已知y=ax2+bx的圖象如圖所示,則y=ax-b的圖象一定過( )

A.第一、二、三象限
B.第一、二、四象限
C.第二、三、四象限
D.第一、三、四象限
【答案】分析:由拋物線的開口方向,判斷a的符號,再由對稱軸判定b的符號,最后利用一次函數(shù)的性質(zhì)解答.
解答:解:∵拋物線的開口向下
∴a<0
∵拋物線的對稱軸x=->0,
∴b>0
∴在y=ax-b中,a<0,b<0
∴圖象經(jīng)過第二、三、四象限.
故選C.
點評:本題主要考查二次函數(shù)、一次函數(shù)的圖象與性質(zhì),滲透數(shù)形結(jié)合的思想.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知y=ax2+bx+c的圖象如圖所示,則y=ax+b的圖象一定過( 。
A、第一,二,三象限B、第一,二,四象限C、第二,三,四象限D、第一,三,四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

38、給出下列四個判斷:(1)線段是軸對稱圖形,它只有一條對稱軸;(2)各邊相等的圓外切多邊形是正多方形;(3)一組對邊相等,一條對角線被另一條對角線平分的四邊形是平行四邊形;(4)已知方程ax2+bx+c=0中,a、b、c是實數(shù),且b2-4ac>0,那么這個方程有兩個不相等的實數(shù)根.
其中不正確的判斷有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知方程ax2+bx+cy=0(a≠0、b、c為常數(shù)),請你通過變形把它寫成你所熟悉的一個函數(shù)表達式的形式.則函數(shù)表達式為
 
,成立的條件是
 
,是
 
函數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知y=ax2+bx+c的圖象如圖,那么關(guān)于x的方程ax2+bx+c-3=0的根的情況( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知方程ax2+bx+c=0有兩個正根,則下述結(jié)論:(1)a,b,c>0(2)a,b,c<0(3)a>0,b,c<0(4)a<0,b,c>0中,肯定錯誤的結(jié)論有幾個( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習冊答案