【題目】對(duì)于一個(gè)三角形,設(shè)其三個(gè)內(nèi)角的度數(shù)分別為x°、y°和z°,若x、y、z滿足x2+y2=z2,我們定義這個(gè)三角形為美好三角形.
(1)△ABC中,若∠A=40°,∠B=80°,則△ABC (填“是”或“不是”)美好三角形;
(2)如圖,銳角△ABC是⊙O的內(nèi)接三角形,∠C=60°,AC=2,⊙O的直徑是2,求證:△ABC是美好三角形;
(3)已知△ABC是美好三角形,∠A=30°,求∠C的度數(shù).
【答案】(1)不是;(2)見解析;(3)∠C=78°或72°.
【解析】
(1)利用美好三角形的定義得出△ABC的形狀進(jìn)而求出即可;
(2)利用勾股定理的逆定理得出△ABC的形狀進(jìn)而得出答案;
(3)利用美好三角形的定義進(jìn)而分別得出∠C的度數(shù).
(1)∵△ABC中,∠A=40°,∠B=80°,
∴∠C=60°
∵402+602≠802,
∴△ABC不是美好三角形;
故答案為:不是;
(2)證明:連接OA、OC,
∵AC=2,OA=OC=,
∴△OAC是直角三角形,即∠AOC=90°,
∴∠B=45°,
∵∠C=60°,
∴∠A=75°,
∵即三個(gè)內(nèi)角滿足關(guān)系:452+602=5625=752,
∴△ABC是美好三角形;
(3)設(shè)∠C=x°,則∠B=(150﹣x)°,
若∠C為最大角,則x2=(150﹣x)2+302,
解得x=78,
若∠B最大角,則(150﹣x)2=x2+302,
解得x=72,
綜上可知,∠C=78°或72°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課外小組的同學(xué)們在社會(huì)實(shí)踐活動(dòng)中調(diào)查了20戶家庭萊月的用電量,如表所示:
用電量(千瓦時(shí)) | 120 | 140 | 160 | 180 | 200 |
戶數(shù) | 2 | 3 | 6 | 7 | 2 |
則這20戶家庭該月用電量的眾數(shù)和中位數(shù)、平均數(shù)分別是( )
A. 180,160,164B. 160,180;164
C. 160,160,164D. 180,180,164
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AD是高,矩形PQMN的頂點(diǎn)P、N分別在AB、AC上,QM在邊BC上,若BC=8cm,AD=6cm,且PN=2PQ,則矩形PQMN的周長為( 。
A. 14.4cmB. 7.2cmC. 11.52cmD. 12.4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在建立了平面直角坐標(biāo)系的正方形網(wǎng)格中,A(2,2),B(1,0),C(3,1)
(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1.
(2)畫出將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,所得的△A2B2C2.并直接寫出A2點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=6cm,AC=8cm.若動(dòng)點(diǎn)P以2cm/s的速度從B點(diǎn)出發(fā)沿著B→A的方向運(yùn)動(dòng),點(diǎn)Q以1cm/s的速度從A點(diǎn)出發(fā)沿著A→C的方向運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s),當(dāng)△APQ是直角三角形時(shí),t的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于某一函數(shù)給出如下定義:若存在實(shí)數(shù)m,自變量的值為m 時(shí),函數(shù)值等于m,則稱m為這個(gè)函數(shù)的反向值.在函數(shù)存在反向值時(shí),該函數(shù)的最大反向值與最小反向值之差n稱為這個(gè)函數(shù)的反向距離.特別地,當(dāng)函數(shù)只有一個(gè)反向值時(shí),其反向距離n為零. 例如:圖中的函數(shù)有 4,-1兩個(gè)反向值,其反向距離 n 等于 5. 現(xiàn)有函數(shù)y=,則這個(gè)函數(shù)的反向距離的所有可能值有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)及以上的有限個(gè)D. 無數(shù)個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,有“拋物線系”y=-(x-m)2+4m-3,頂點(diǎn)為點(diǎn)P,這些拋物線的形狀與拋物線 y=-x2 相同,但頂點(diǎn)位置不同.
(1)填寫下表,并說出:在m取不同數(shù)值時(shí),點(diǎn)P位置的變化具有什么特征?
m的值 | … | -1 | 0 | 1 | 2 | … |
點(diǎn)P坐標(biāo) | … | … |
(2)若拋物線的對(duì)稱軸是直線x=1,則可確定m的值.點(diǎn)M(p,q)為此拋物線上的一個(gè)動(dòng)點(diǎn),且﹣1<p<2,而直線y=kx-4(k≠0)始終經(jīng)過點(diǎn)M.
①求此拋物線與x軸的交點(diǎn)坐標(biāo);
②求k的取值范圍.
(3)若點(diǎn)Q在x軸上,點(diǎn)S(0,-1)在y軸上,點(diǎn)R在坐標(biāo)平面內(nèi),且以點(diǎn)P,Q,R,S為頂點(diǎn)的四邊形是正方形,試直接寫出所有點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=x的圖象與函數(shù)y=的圖象在第一象限內(nèi)交于點(diǎn)A、B(2,m)兩點(diǎn).
(1)請求出函數(shù)y=的解析式;
(2)請根據(jù)圖象判斷當(dāng)一次函數(shù)的值大于反比例函數(shù)的值時(shí)x的取值范圍;
(3)點(diǎn)C是函數(shù)y=在第一象限圖象上的一個(gè)動(dòng)點(diǎn),當(dāng)OBC的面積為3時(shí),請求出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊中,,點(diǎn)D是線段BC上的一動(dòng)點(diǎn),連接AD,過點(diǎn)D作,垂足為D,交射線AC與點(diǎn)設(shè)BD為xcm,CE為ycm.
小聰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小聰?shù)奶骄窟^程,請補(bǔ)充完整:
通過取點(diǎn)、畫圖、測量,得到了x與y的幾組值,如下表:
0 | 1 | 2 | 3 | 4 | 5 | ||||||
___ | 0 | 0 |
說明:補(bǔ)全表格上相關(guān)數(shù)值保留一位小數(shù)
建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)線段BD是線段CE長的2倍時(shí),BD的長度約為_____cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com