【題目】某養(yǎng)殖場計劃用96米的竹籬笆圍成如圖所示的①、②、③三個養(yǎng)殖區(qū)域,其中區(qū)域①是正方形,區(qū)域②和③是矩形,且AG∶BG=3∶2.設(shè)BG的長為2x米.
(1)用含x的代數(shù)式表示DF= ;
(2)x為何值時,區(qū)域③的面積為180平方米;
(3)x為何值時,區(qū)域③的面積最大?最大面積是多少?
【答案】(1)48-12x;(2)x為1或3;(3)x為2時,區(qū)域③的面積最大,為240平方米
【解析】
(1)將DF、EC以外的線段用x表示出來,再用96減去所有線段的長再除以2可得DF的長度;
(2)將區(qū)域③圖形的面積用關(guān)于x的代數(shù)式表示出來,并令其值為180,求出方程的解即可;
(3)令區(qū)域③的面積為S,得出x關(guān)于S的表達式,得到關(guān)于S的二次函數(shù),求出二次函數(shù)在x取值范圍內(nèi)的最大值即可.
(1)48-12x
(2)根據(jù)題意,得5x(48-12x)=180,
解得x1=1,x2=3
答:x為1或3時,區(qū)域③的面積為180平方米
(3)設(shè)區(qū)域③的面積為S,則S=5x(48-12x)=-60x2+240x=-60(x-2)2+240
∵-60<0,∴當(dāng)x=2時,S有最大值,最大值為240
答:x為2時,區(qū)域③的面積最大,為240平方米
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,AB=8,點M在圓O上,∠MOB=60°,N是的中點,P為AB上一動點,則PM+PN的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水產(chǎn)養(yǎng)殖戶進行小龍蝦養(yǎng)殖. 已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,日銷售量與時間第天之間的函數(shù)關(guān)系式為(,為整數(shù)),銷售單價(元/)與時間第天之間滿足一次函數(shù)關(guān)系如下表:
時間第天 | 1 | 2 | 3 | … | 80 |
銷售單價(元/) | 49. 5 | 49 | 48. 5 | … | 10 |
(1)寫出銷售單價(元/)與時間第天之間的函數(shù)關(guān)系式;
(2)在整個銷售旺季的80天里,哪一天的日銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合實踐:
問題情境
數(shù)學(xué)活動課上,老師和同學(xué)們在正方形中利用旋轉(zhuǎn)變換探究線段之間的關(guān)系探究過程如下所示:如圖I,在正方形中,點為邊的中點.將以點為旋轉(zhuǎn)中心,順時針方向旋轉(zhuǎn),當(dāng)點的對應(yīng)點落在邊上時,連接.
“興趣小組”發(fā)現(xiàn)的結(jié)論是:;
“卓越小組”發(fā)現(xiàn)的結(jié)論是:.
解決問題
(1)請你證明“興趣小組”和“卓越小組”發(fā)現(xiàn)的結(jié)論;
拓展探究
證明完“興趣小組”和“卓越小組”發(fā)現(xiàn)的結(jié)論后,“智慧小組”提出如下問題:如圖2,連接,若正方形的邊長為,求出的長度.
(2)請你幫助智慧小組寫出線段的長度.(直接寫出結(jié)論即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團隊有研發(fā)、管理和操作三個小組,各組的日工資和人數(shù)如下表所示.現(xiàn)從管理組分別抽調(diào)1人到研發(fā)組和操作組,調(diào)整后與調(diào)整前相比,下列說法中不正確的是( )
操作組 | 管理組 | 研發(fā)組 | |
日工資(元/人) | 260 | 280 | 300 |
人數(shù)(人) | 4 | 4 | 4 |
A.團隊平均日工資不變B.團隊日工資的方差不變
C.團隊日工資的中位數(shù)不變D.團隊日工資的極差不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點E為AD的中點,不用圓規(guī)、量角器等工具,只用無刻度的直尺作圖.
(1)如圖1,在BC上找點F,使點F是BC的中點;
(2)如圖2,連接AC,在AC上取兩點P,Q,使P,Q是AC的三等分點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖二次函數(shù)的圖像交軸于、,交軸于,直線平行于周,與拋物線另一個交點為.
(1)求函數(shù)的解析式;
(2)若是軸上的動點,是拋物線上的動點,求使以、、、為頂點的四邊形是平行四邊形的的橫坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副三角板按如圖1所示放置,其中點在邊上,,斜邊.將三角板繞點順時針旋轉(zhuǎn),記旋轉(zhuǎn)角為.
(1)在圖1中,設(shè)與的交點為,則線段AF的長為 ;
(2)當(dāng)時,三角板旋轉(zhuǎn)到,的位置(如圖2所示),連接,請判斷四邊形的形狀,并證明你的結(jié)論;
(3)當(dāng)三角板旋轉(zhuǎn)到的位置(如圖3所示)時,此時點恰好在的延長線上.①求旋轉(zhuǎn)角的度數(shù);②求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com