【題目】如圖,已知,BC∥OA,∠B=∠A=100°,試回答下列問題:
(1)如圖①,求證:OB∥AC.
(2)如圖②,若點E、F在線段BC上,且滿足∠FOC=∠AOC,并且OE平分∠BOF.求∠EOC的度數(shù).
(3)在(2)的條件下,若平行移動AC,如圖③,那么∠OCB:∠OFB的值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個比值.

【答案】
(1)解:∵BC∥OA,

∴∠B+∠O=180°,

∴∠O=180°﹣∠B=80°,

而∠A=100°,

∴∠A+∠O=180°,

∴OB∥AC;


(2)解:∵OE平分∠BOF,

∴∠BOE=∠FOE= ∠BOF,

而∠FOC=∠AOC= ∠AOF,

∴∠EOC=∠EOF+∠COF= ∠AOB= ×80°=40°;


(3)解:不改變,

∵BC∥OA,

∴∠OCB=∠AOC,

∵∠FOC=∠AOC,

∴∠FOC=∠OCB,

∴∠OFB=∠FOC+∠OCB=2∠OCB,即∠OCB:∠OFB的值為1:2.


【解析】(1)由平行線的性質(zhì)知∠O=180°﹣∠B=80°,結(jié)合∠A=100°得∠A+∠O=180°,即可得證;(2)由角平分線的性質(zhì)可得;(3)由BC∥OA知∠OCB=∠AOC,結(jié)合∠FOC=∠AOC知∠FOC=∠OCB,從而得∠OFB=2∠OCB;

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,射線OM上有三點A、B、C,滿足OA=20cm,AB=60cm,BC=10cm,點P從點O出發(fā),沿OM方向以1cm/秒的速度勻速運動,點Q從點C出發(fā)在線段CO上向點O勻速運動,兩點同時出發(fā),當點Q運動到點O時,點P、Q停止運動.

(1)若點Q運動速度為2cm/秒,經(jīng)過多長時間P、Q兩點相遇?

(2)P在線段AB上且PA=3PB時,點Q運動到的位置恰好是線段AB的三等分點,求點Q的運動速度;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個三角形的第一條邊長為2a+5b,第二條邊比第一條邊長3a﹣2b,第三條邊比第二條邊短3a.

1則第二邊的邊長為 ,第三邊的邊長為 ;

2用含a,b的式子表示這個三角形的周長,并化簡;

3)若a,b滿足|a﹣5|+b﹣32=0,求出這個三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以直角三角形AOC的直角頂點O為原點,以O(shè)C、OA所在直線為x軸和y軸建立平面直角坐標系,點A(0,a),C(b,0)滿足 +|b﹣2|=0.

(1)則C點的坐標為;A點的坐標為
(2)已知坐標軸上有兩動點P、Q同時出發(fā),P點從C點出發(fā)沿x軸負方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達A點整個運動隨之結(jié)束.AC的中點D的坐標是(1,2),設(shè)運動時間為t(t>0)秒.問:是否存在這樣的t,使SODP=SODQ?若存在,請求出t的值;若不存在,請說明理由
(3)點F是線段AC上一點,滿足∠FOC=∠FCO,點G是第二象限中一點,連OG,使得∠AOG=∠AOF.點E是線段OA上一動點,連CE交OF于點H,當點E在線段OA上運動的過程中, 的值是否會發(fā)生變化?若不變,請求出它的值;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń庀铝蟹匠探M:

(1)

(2)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列敘述中,不正確的個數(shù)有( ) ①所有的正數(shù)都是整數(shù)②|a|一定是正數(shù) ③無限小數(shù)一定是無理數(shù) ④(﹣2)3沒有平方根 的平方根是±4
A.3個
B.4個
C.5個
D.6個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列三行數(shù)

﹣3,9,﹣27,81,﹣243,……

﹣5,7,﹣29,79,﹣245,……

﹣1,3,﹣9,27,﹣81,……

第①行數(shù)排列律是_____;第②行數(shù)與第①行數(shù)的關(guān)系是_____;第③行數(shù)與第①行數(shù)的關(guān)系是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若△ABC的兩邊AB,AC的長是這個方程的兩個實數(shù)根.第三邊BC的長為5,當△ABC是等腰三角形時,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,B=60°,AB=2cm,E、F分別是BC、CD的中點,連接AE、EF、AF,則AEF的周長為(  )

A. 2cm B. 3 cm C. 4cm D. 3cm

查看答案和解析>>

同步練習冊答案