【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類(lèi)活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛(ài)好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類(lèi)),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:

(1)九(1)班的學(xué)生人數(shù)為__ , 并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中m=10 , n=20 , 表示“足球”的扇形的圓心角是多少度;
(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.

【答案】
(1)解:九(1)班的學(xué)生人數(shù)為:12÷30%=40(人),
喜歡足球的人數(shù)為:40-4-12-16=40-32=8(人),
補(bǔ)全統(tǒng)計(jì)圖如圖所示;

(2)解:∵ ×100%=10%,
×100%=20%,
∴m=10,n=20,
表示“足球”的扇形的圓心角是20%×360°=72°
(3)解:根據(jù)題意畫(huà)出樹(shù)狀圖如下:

一共有12種情況,恰好是1男1女的情況有6種,
∴P(恰好是1男1女)=
【解析】(1)兩圖結(jié)合,利用籃球人數(shù)除以其所占百分比=全班人數(shù);(2)圓心角度數(shù)=周角乘以百分比;(3)選兩名學(xué)生,兩個(gè)步驟分別有4種、3種情況,共12種機(jī)會(huì)均等的結(jié)果,代入概率公式,可求出概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀與理解:

如圖1,直線(xiàn),點(diǎn)Pa,b之間,MN分別為a,b上的點(diǎn),P,M,N三點(diǎn)不在同一直線(xiàn)上,PMa的央角為PNb的夾角為,則

理由如下:

過(guò)P點(diǎn)作直線(xiàn),因?yàn)?/span>,所以(如果兩條直線(xiàn)都與第三條直線(xiàn)平行,那么這兩條直線(xiàn)也互相平行).所以,.(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等),所以,即

計(jì)算與說(shuō)明:

已知:如圖2,ABCD交于點(diǎn)O

1.,求證:;

22.如圖3,已知AE平分,DE平分

①若,,請(qǐng)你求出的度數(shù);

②請(qǐng)問(wèn):圖3中,有怎樣的數(shù)量關(guān)系?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某開(kāi)發(fā)公司生產(chǎn)的960件新產(chǎn)品需要精加工后才能投放市場(chǎng),F(xiàn)有甲、乙兩個(gè)工廠(chǎng)都想加工這批產(chǎn)品,已知甲廠(chǎng)單獨(dú)加工這批產(chǎn)品比乙工廠(chǎng)單獨(dú)加工完這批產(chǎn)品多用20,而甲工廠(chǎng)每天加工的數(shù)量是乙工廠(chǎng)每天加工數(shù)量的,甲、乙兩個(gè)工廠(chǎng)每天各能加工多少個(gè)新產(chǎn)品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高度發(fā)展,據(jù)調(diào)查,長(zhǎng)沙市某家小型“大學(xué)生自主創(chuàng)業(yè)”的快遞公司,今年三月份與五月份完成投遞的快遞總件數(shù)分別為10萬(wàn)件和12.1萬(wàn)件,現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長(zhǎng)率相同.
(1)求該快遞公司投遞總件數(shù)的月平均增長(zhǎng)率;
(2)如果平均每人每月最多可投遞0.6萬(wàn)件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成今年6月份的快遞投遞任務(wù)?如果不能,請(qǐng)問(wèn)至少需要增加幾名業(yè)務(wù)員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠AOB=90°,在∠AOB的平分線(xiàn)OM上有一點(diǎn)C,將一個(gè)三角板的直角頂點(diǎn)與C重合,它的兩條直角邊分別與OA,OB(或它們的反向延長(zhǎng)線(xiàn))相交于點(diǎn)D,E.
當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CD與OA垂直時(shí)(如圖①),易證:OD+OE= OC;
當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CD與OA不垂直時(shí),即在圖②,圖③這兩種情況下,上述結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,線(xiàn)段OD,OE,OC之間又有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圖象(折線(xiàn)OEFPMN)描述了某汽車(chē)在行駛過(guò)程中速度與時(shí)間的函數(shù)關(guān)系,下列說(shuō)法中錯(cuò)誤的是( )

A. 3分時(shí)汽車(chē)的速度是40千米/時(shí)

B. 12分時(shí)汽車(chē)的速度是0千米/時(shí)

C. 從第3分到第6分,汽車(chē)行駛了120千米

D. 從第9分到第12分,汽車(chē)的速度從60千米/時(shí)減少到0千米/時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某探測(cè)隊(duì)在地面A、B兩處均探測(cè)出建筑物下方C處有生命跡象,已知探測(cè)線(xiàn)與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5, ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)DBC邊上的一點(diǎn),∠B=50°,∠BAD=30°,將ABD沿AD折疊得到AEDAEBC交于點(diǎn)F

1)填空:∠AFC=______度;

2)求∠EDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開(kāi)展以倡導(dǎo)綠色出行,關(guān)愛(ài)師生健康為主題的教育活動(dòng).為了了解本校師生的出行方式,在本校范圍內(nèi)隨機(jī)抽查了部分師生,已知隨機(jī)抽查的教師人數(shù)為學(xué)生人數(shù)的一半,將收集的數(shù)據(jù)繪制成下列不完整的兩種統(tǒng)計(jì)圖.

1)本次共調(diào)查了多少名學(xué)生?

2)求學(xué)生步行所在扇形的圓心角度數(shù).

3)求教師乘私家車(chē)出行的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案