【題目】(10分)如圖,已知線段AB上有兩點(diǎn)C,D,且AC=BD,M,N分別是線段AC,AD的中點(diǎn),若AB=acm,AC=BD=bcm,且a,b滿足(a-10)2+=0.
(1)求AB,AC的長度;
(2)求線段MN的長度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A是x軸正半軸上的一個(gè)定點(diǎn),點(diǎn)P是雙曲線 (x>0)上的一個(gè)動(dòng)點(diǎn),PB⊥y軸于點(diǎn)B , 當(dāng)點(diǎn)P的橫坐標(biāo)逐漸增大時(shí),四邊形OAPB的面積將會(huì)( 。
A.逐漸增大
B.不變
C.逐漸減小
D.先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在3×3正方形網(wǎng)格中,頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形叫做格點(diǎn)三角形,給出下列命題: ①一定存在全等的兩個(gè)格點(diǎn)三角形
②一定存在相似且不全等的兩個(gè)格點(diǎn)三角形
③一定存在兩個(gè)格點(diǎn)三角形是位似圖形
④一定存在周長和面積均為無理數(shù)的格點(diǎn)三角形
其中真命題的個(gè)數(shù)是( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE是△ABC的中位線,F(xiàn)是DE的中點(diǎn),CF的延長線交AB于點(diǎn)G,若△CEF的面積為12cm2,則S△DGF的值為( )
A.4cm2 B.6cm2 C.8cm2 D.9cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,線段AD的垂直平分線分別交AB和AC于點(diǎn)E、F,連接DE、DF.
(1)試判定四邊形AEDF的形狀,并證明你的結(jié)論.
(2)若DE=13,EF=10,求AD的長.
(3)△ABC滿足什么條件時(shí),四邊形AEDF是正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=108°,OE是∠AOB的平分線,OC在∠AOE內(nèi).
(1)若∠COE=∠AOE,求∠AOC的度數(shù);
(2)若∠BOC-∠AOC=72°,則OB與OC有怎樣的位置關(guān)系?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(4,0),B(0,3),以線段AB為邊在第一象限內(nèi)作等腰直角三角形ABC,∠BAC=90°.若第二象限內(nèi)有一點(diǎn)P,且△ABP的面積與△ABC的面積相等.
(1)求直線AB的函數(shù)表達(dá)式.
(2)求a的值.
(3)在x軸上是否存在一點(diǎn)M,使△MAC為等腰三角形?若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y-2與x+1成正比例函數(shù)關(guān)系,且x=-2時(shí),y=6.
(1)寫出y與x之間的函數(shù)解析式;
(2)求當(dāng)x=-3時(shí),y的值;
(3)求當(dāng)y=4時(shí),x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列計(jì)算過程,發(fā)現(xiàn)規(guī)律,利用規(guī)律猜想并計(jì)算:
1+2==3;1+2+3==6,1+2+3+4==10;1+2+3+4+5==15;…
(1)猜想:1+2+3+4+…+n= .
(2)利用上述規(guī)律計(jì)算:1+2+3+4+…+200;
(3)嘗試計(jì)算:3+6+9+12+…3n的結(jié)果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com