【題目】知識(shí)儲(chǔ)備
如圖①,點(diǎn)E、F分別是y=3和y=﹣1上的動(dòng)點(diǎn),則EF的最小值是 ;
方法儲(chǔ)備
直角坐標(biāo)系的建立,在代數(shù)和幾何之間架起了一座橋梁,用代數(shù)的方法解決幾何問(wèn)題:某數(shù)學(xué)小組在自主學(xué)習(xí)時(shí)了解了三角形的中位線(xiàn)及相關(guān)的定理,在學(xué)習(xí)了《坐標(biāo)與位置)后,該小組同學(xué)深入思考,利用中點(diǎn)坐標(biāo)公式,給出了三角形中位線(xiàn)定理的一種證明方法.如圖②,在△ABC中,點(diǎn)D,E分別是AB,AC邊的中點(diǎn),DE稱(chēng)為△ABC的中位線(xiàn),則DE∥BC且DE=BC.該數(shù)學(xué)小組建立如圖③的直角坐標(biāo)系,設(shè)點(diǎn)A(a,b),點(diǎn)C (0,c)(c>0).請(qǐng)你利用該數(shù)學(xué)學(xué)習(xí)小組的思路證明DE∥BC且DE=BC.(提示:中點(diǎn)坐標(biāo)公式,A(x1,y1),B(x2,y2),則A,B中點(diǎn)坐標(biāo)為(,).
綜合應(yīng)用
結(jié)合上述知識(shí)和方法解決問(wèn)題,如圖④,在△ABC中,∠ACB=90°,AC=3,BC=6,延長(zhǎng)AC至點(diǎn) D.DE⊥AD,連接EC并延長(zhǎng)交AB邊于點(diǎn)F.若2CD+DE=6,則EF是否存在最小值,若存在,求出最小值;若不存在,請(qǐng)說(shuō)明理由.
【答案】知識(shí)儲(chǔ)備: 4;方法儲(chǔ)備:見(jiàn)解析;綜合應(yīng)用:EF存在最小值,最小值為.
【解析】
知識(shí)儲(chǔ)備:根據(jù)垂線(xiàn)段最短,平行線(xiàn)之間的距離解決問(wèn)題即可.
方法儲(chǔ)備:如圖③中,設(shè),.利用中點(diǎn)坐標(biāo)公式求解即可.
綜合運(yùn)用:建立如圖平面直角坐標(biāo)系,設(shè),則.求出點(diǎn)的運(yùn)動(dòng)軌跡,轉(zhuǎn)化為知識(shí)儲(chǔ)備的類(lèi)型即可解決問(wèn)題.
解:知識(shí)儲(chǔ)備:如圖①,點(diǎn)、分別是和上的動(dòng)點(diǎn),則的最小值是,
故答案為4;
方法儲(chǔ)備:如圖③中,設(shè),.
,,
,,,,
,
,
,
;
綜合應(yīng)用:建立如圖平面直角坐標(biāo)系,設(shè),則.
,
,
點(diǎn)的運(yùn)動(dòng)軌跡是直線(xiàn),設(shè)這條直線(xiàn)與軸交于,由軸交于.
,,
直線(xiàn)的解析式為,
,
根據(jù)垂線(xiàn)段最短可知,當(dāng)時(shí),長(zhǎng)最小,
作于,交于.
,,
,
,
直線(xiàn)與直線(xiàn)關(guān)于原點(diǎn)對(duì)稱(chēng),
根據(jù)對(duì)稱(chēng)性可知,
的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車(chē)產(chǎn)業(yè)的發(fā)展,有效促進(jìn)我國(guó)現(xiàn)代化建設(shè).某汽車(chē)銷(xiāo)售公司2016年盈利1500萬(wàn)元,到2018年盈利2160萬(wàn)元,且從2016年到2018年,每年盈利的年增長(zhǎng)率相同.
(1)求每年盈利的年增長(zhǎng)率;
(2)若該公司盈利的年增長(zhǎng)率繼續(xù)保持不變,那么2019年該公司盈利能否達(dá)到2500萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在中,,,線(xiàn)段的垂直平分線(xiàn)交于點(diǎn),交于點(diǎn),則以下結(jié)論:①是等腰三角形;②是的角平分線(xiàn);③的周長(zhǎng);④正確的有( )
A.①②B.①③C.③④D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,命題:①若∠B=∠C-∠A,則△ABC是直角三角形.②若a2=(b+c)(b-c),則△ABC是直角三角形.③若∠A∶∠B∶∠C=3∶4∶5,則△ABC是直角三角形.④若a∶b∶c=5∶4∶3.則△ABC是直角三角形. 其中假命題個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直徑為 10cm 的⊙O 中,兩條弦 AB,CD 分別位于圓心的異側(cè),AB∥CD,且,若 AB=8cm,則 CD 的長(zhǎng)為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,拋物線(xiàn)y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線(xiàn)段AB上方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?
(3)過(guò)點(diǎn)P作x軸的垂線(xiàn),交線(xiàn)段AB于點(diǎn)D,再過(guò)點(diǎn)P做PE∥x軸交拋物線(xiàn)于點(diǎn)E,連結(jié)DE,請(qǐng)問(wèn)是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E,F分別在AB,BC上,且AE=BF.
(1)試探索線(xiàn)段AF,DE的數(shù)量關(guān)系,寫(xiě)出你的結(jié)論并說(shuō)明理由;
(2)連接EF,DF,分別取AE,EF,FD,DA的中點(diǎn)H,I,J,K,則四邊形HIJK是什么特殊四邊形?請(qǐng)?jiān)趫D2中補(bǔ)全圖形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)M(4,0),以點(diǎn)M為圓心、2為半徑的圓與x軸交于點(diǎn)A、B.已知拋物線(xiàn) 過(guò)點(diǎn)A和B,與y軸交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo),并畫(huà)出拋物線(xiàn)的大致圖象.
(2)點(diǎn)Q(8,m)在拋物線(xiàn)上,點(diǎn)P為此拋物線(xiàn)對(duì)稱(chēng)軸上一個(gè)動(dòng)點(diǎn),求PQ+PB的最小值.
(3)CE是過(guò)點(diǎn)C的⊙M的切線(xiàn),點(diǎn)E是切點(diǎn),求OE所在直線(xiàn)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們約定:對(duì)角線(xiàn)互相垂直的凸四邊形叫做“正垂形”.
(1)①在“平行四邊形,矩形,菱形,正方形”中,一定是“正垂形”的有 ;
②在凸四邊形ABCD中,AB=AD且CB≠CD,則該四邊形 “正垂形”.(填“是”或“不是”)
(2)如圖1,A,B,C,D是半徑為1的⊙O上按逆時(shí)針?lè)较蚺帕械乃膫(gè)動(dòng)點(diǎn),AC與BD交于點(diǎn)E,∠ACB﹣∠CDB=∠ACD﹣∠CBD,當(dāng)≤OE≤時(shí),求AC2+BD2的取值范圍;
(3)如圖2,在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=ax2+bx+c(a,b,c為常數(shù),a>0,c<0)與x軸交于A(yíng),C兩點(diǎn)(點(diǎn)A在點(diǎn)C的左側(cè)),B是拋物線(xiàn)與y軸的交點(diǎn),點(diǎn)D的坐標(biāo)為(0,﹣ac),記“正垂形”ABCD的面積為S,記△AOB,△COD,△AOD,△BOC的面積分別為S1,S2,S3,S4.試直接寫(xiě)出滿(mǎn)足下列三個(gè)條件的拋物線(xiàn)的解析式;
①; ②; ③“正垂形”ABCD的周長(zhǎng)為12.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com