如圖1,拋物線y=x2-2x+k與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,-3).[圖2、圖3為解答備用圖]

(1)k=______,點(diǎn)A的坐標(biāo)為_(kāi)_____,點(diǎn)B的坐標(biāo)為_(kāi)_____;
(2)設(shè)拋物線y=x2-2x+k的頂點(diǎn)為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)在拋物線y=x2-2x+k上求點(diǎn)Q,使△BCQ是以BC為直角邊的直角三角形.
【答案】分析:(1)把C(0,-3)代入拋物線解析式可得k值,令y=0,可得A,B兩點(diǎn)的橫坐標(biāo);
(2)過(guò)M點(diǎn)作x軸的垂線,把四邊形ABMC分割成兩個(gè)直角三角形和一個(gè)直角梯形,求它們的面積和;
(3)設(shè)D(m,m2-2m-3),連接OD,把四邊形ABDC的面積分成△AOC,△DOC,△DOB的面積和,求表達(dá)式的最大值;(4)有兩種可能:B為直角頂點(diǎn)、C為直角頂點(diǎn),要充分認(rèn)識(shí)△OBC的特殊性,是等腰直角三角形,可以通過(guò)解直角三角形求出相關(guān)線段的長(zhǎng)度.
解答:解:(1)把C(0,-3)代入拋物線解析式y(tǒng)=x2-2x+k中得k=-3
∴y=x2-2x-3,
令y=0,
即x2-2x-3=0,
解得x1=-1,x2=3.
∴A(-1,0),B(3,0).

(2)∵y=x2-2x-3=(x-1)2-4,
∴拋物線的頂點(diǎn)為M(1,-4),連接OM.
則△AOC的面積=,△MOC的面積=
△MOB的面積=6,
∴四邊形ABMC的面積=△AOC的面積+△MOC的面積+△MOB的面積=9.
說(shuō)明:也可過(guò)點(diǎn)M作拋物線的對(duì)稱軸,將四邊形ABMC的面
積轉(zhuǎn)化為求1個(gè)梯形與2個(gè)直角三角形面積的和.

(3)如圖(2),設(shè)D(m,m2-2m-3),連接OD.
則0<m<3,m2-2m-3<0
且△AOC的面積=,△DOC的面積=m,
△DOB的面積=-(m2-2m-3),
∴四邊形ABDC的面積=△AOC的面積+△DOC的面積+△DOB的面積
=-m2+m+6
=-(m-2+
∴存在點(diǎn)D(,),使四邊形ABDC的面積最大為

(4)有兩種情況:
如圖(3),過(guò)點(diǎn)B作BQ1⊥BC,交拋物線于點(diǎn)Q1、交y軸于點(diǎn)E,連接Q1C.
∵∠CBO=45°,
∴∠EBO=45°,BO=OE=3.
∴點(diǎn)E的坐標(biāo)為(0,3).
∴直線BE的解析式為y=-x+3.

解得
∴點(diǎn)Q1的坐標(biāo)為(-2,5).
如圖(4),過(guò)點(diǎn)C作CF⊥CB,交拋物線于點(diǎn)Q2、交x軸于點(diǎn)F,連接BQ2
∵∠CBO=45°,
∴∠CFB=45°,OF=OC=3.
∴點(diǎn)F的坐標(biāo)為(-3,0).
∴直線CF的解析式為y=-x-3.

解得
∴點(diǎn)Q2的坐標(biāo)為(1,-4).
綜上,在拋物線上存在點(diǎn)Q1(-2,5)、Q2(1,-4),使△BCQ1、△BCQ2是以BC為直角邊的直角三角形.

說(shuō)明:如圖(4),點(diǎn)Q2即拋物線頂點(diǎn)M,直接證明△BCM為直角三角形同樣可以.
點(diǎn)評(píng):本題考查了拋物線解析式的求法,運(yùn)用解析式解決面積問(wèn)題,及求構(gòu)成直角三角形的條件等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知二次函數(shù)的圖象是經(jīng)過(guò)點(diǎn)A(1,0),B(3,0),E(0,6)三點(diǎn)的一條拋物線.
(1)求這條拋物線的解析式;
(2)如圖,設(shè)拋物線的頂點(diǎn)為C,對(duì)稱軸交x軸于點(diǎn)D,在y軸正半軸上有一點(diǎn)P,且以A、O、P為頂點(diǎn)的三角形與△ACD相似,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高”(h).我們可得出一種計(jì)算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問(wèn)題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)B為拋物線與y軸的交點(diǎn),求直線AB的解析式;
(3)在(2)的條件下,設(shè)拋物線的對(duì)稱軸分別交AB、x軸于點(diǎn)D、M,連接PA、PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB;
(4)在(2)的條件下,設(shè)P點(diǎn)的橫坐標(biāo)為x,△PAB的鉛垂高為h、面積為S,請(qǐng)分別寫(xiě)出h和S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,矩形ABCD,點(diǎn)C與坐標(biāo)原點(diǎn)O重合,點(diǎn)A在x軸上,點(diǎn)B坐標(biāo)為(3,
3
),求經(jīng)過(guò)A、B、C三點(diǎn)拋物線的解析式;
(2)如圖2,拋物線E:y=-
1
2
x2+bx+c
經(jīng)過(guò)坐標(biāo)原點(diǎn)O,其頂點(diǎn)在y軸左側(cè),以O(shè)為頂點(diǎn)作矩形OADC,A、C為拋物線E上兩點(diǎn),若AC∥x軸,AD=2CD,則拋物線的解析式是
 
;
(3)如圖3,點(diǎn)A、B、C分別為拋物線F:y=ax2+bx+c(a<0)上的點(diǎn),點(diǎn)B在對(duì)稱軸右側(cè),點(diǎn)D在拋物線外,順次連接A、B、C、D四點(diǎn),所成四邊形為矩形,且AC∥x軸,AD=2CD,求矩形ABCD的周長(zhǎng)(用含a的式子表示).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將拋物線y=-
1
2
x2
平移后經(jīng)過(guò)原點(diǎn)O和點(diǎn)A(6,0),平移后的拋物線的頂點(diǎn)為點(diǎn)B,對(duì)稱軸與拋物線y=-
1
2
x2
相交于點(diǎn)C,則圖中直線BC與兩條拋物線圍成的陰影部分的面積為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:
如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高”(h).我們可得出一種計(jì)算三角形面積的新方法:S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問(wèn)題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)B為拋物線與y軸的交點(diǎn),求直線AB的解析式;
(3)設(shè)點(diǎn)P是拋物線(第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),是否存在一點(diǎn)P,使S△PAB=S△CAB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案