【題目】順次連接平面上四點得到一個四邊形,從①,②,③,④四個條件中任取其中兩個,可以得出“四邊形是平行四邊形”,這一結論的情況共有(

A.2B.3C.4D.5

【答案】B

【解析】

根據(jù)平行四邊形的判定定理可得出答案.

如圖,

當①ABCD,③∠A=C時,四邊形ABCD為平行四邊形;

理由:∵ADBC

∴∠D+C=180°,

∵∠A=C

∴∠D+A=180°,

ABCD,

∴四邊形ABCD是平行四邊形;

當①ABCD,④∠B=D時,四邊形ABCD為平行四邊形;理由:同上;

當③∠A=C,④∠B=D時,四邊形ABCD為平行四邊形;

理由:在四邊形ABCD中,∠A+B+C+D=360°,

∵∠A=C,∠B=D

2A+2B=360°

∴∠A+B=180°,

ADBC,

同理:ABDC

∴四邊形ABCD是平行四邊形;

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,點A、B、Cx軸上,點D、Ey軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M,點P為線段FG上一個動點(與F、G不重合),PQy軸與拋物線交于點Q.

(1)求經過B、E、C三點的拋物線的解析式;

(2)判斷△BDC的形狀,并給出證明;當P在什么位置時,以P、O、C為頂點的三角形是等腰三角形,并求出此時點P的坐標;

(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王師傅承包了一片池塘養(yǎng)水產品,他用總長為88m的圍網圍成如圖所示的5個區(qū)域,其中②③④⑤四個區(qū)域面積相等.設AH=xm,整個矩形區(qū)域的面積為ym2

(1)求yx之間的函數(shù)關系式,并注明自變量x的取值范圍;

(2)當x為何值時,y取最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著人們經濟收入的不斷提高,汽車已越來越多地進入到各個家庭.某大型超市為緩解停車難問題,建筑設計師提供了樓頂停車場的設計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標志,以便告知車輛能否安全駛入.如圖,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點坐標A1,3),與x軸的一個交點B4,0),直線y2=mx+nm≠0)與拋物線交于A,B兩點,下列結論:

①2a+b=0;②abc0;方程ax2+bx+c=3有兩個相等的實數(shù)根;拋物線與x軸的另一個交點是(﹣10);1x4時,有y2y1,

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,把平行四邊形紙片沿折疊,點落在處,相交于點.

1)求證:;

2)連接,求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個三角形中,如果一個角是另一個角的2倍,我們稱這種三角形為倍角三角形.如圖1,倍角△ABC中,∠A=2B,A、B、C的對邊分別記為a,b,c,倍角三角形的三邊a,b,c有什么關系呢?讓我們一起來探索.

(1)我們先從特殊的倍角三角形入手研究.請你結合圖形填空:

三三角形角形

角的已知量

2

A=2B=90°

3

A=2B=60°

(2)如圖4,對于一般的倍角△ABC,若∠CAB=2CBA,CAB、CBA、C的對邊分別記為a,b,c,a,b,c,三邊有什么關系呢?請你作出猜測,并結合圖4給出的輔助線提示加以證明;

(3)請你運用(2)中的結論解決下列問題:若一個倍角三角形的兩邊長為5,6,求第三邊長.(直接寫出結論即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程有實數(shù)根.

(1)m的值;

(2)先作的圖象關于x軸的對稱圖形,然后將所作圖形向左平移3個單位長度,再向上平移2個單位長度,寫出變化后圖象的解析式;

(3)在(2)的條件下,當直線y=2x+n(n≥m)與變化后的圖象有公共點時,求的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點,與坐標原點O在同一直線上,且AO=BO,其中m,n滿足

1)求點A,B的坐標;

2)如圖1,若點MP分別是x軸正半軸和y軸正半軸上的點,點P的縱坐標不等于2,點N在第一象限內,且PAPN,求證:BMMN

3)如圖2,作ACy軸于點CADx軸于點D,在CA延長線上取一點E,使,連結BEAD于點F,恰好有,點GCB上一點,且,連結FG,求證:

查看答案和解析>>

同步練習冊答案