【題目】在平面直角坐標(biāo)系中,已知點(diǎn),與坐標(biāo)原點(diǎn)O在同一直線上,且AO=BO,其中m,n滿足.
(1)求點(diǎn)A,B的坐標(biāo);
(2)如圖1,若點(diǎn)M,P分別是x軸正半軸和y軸正半軸上的點(diǎn),點(diǎn)P的縱坐標(biāo)不等于2,點(diǎn)N在第一象限內(nèi),且,PA⊥PN,,求證:BM⊥MN;
(3)如圖2,作AC⊥y軸于點(diǎn)C,AD⊥x軸于點(diǎn)D,在CA延長(zhǎng)線上取一點(diǎn)E,使,連結(jié)BE交AD于點(diǎn)F,恰好有,點(diǎn)G是CB上一點(diǎn),且,連結(jié)FG,求證:.
【答案】(1)A點(diǎn)坐標(biāo)為(-1,1),B點(diǎn)坐標(biāo)為(1,-1);(2)詳見(jiàn)解析;(3)詳見(jiàn)解析.
【解析】
(1)將關(guān)于m、n的關(guān)系式進(jìn)行變形,成為連個(gè)完全平方式的和,解出m和n的值,即可得到A、B的坐標(biāo).
(2)求證兩線段垂直,可以通過(guò)將兩直線所成的角進(jìn)行拆分,然后計(jì)算各個(gè)角相加的和,本題通過(guò)在x軸負(fù)半軸取點(diǎn)Q,OQ=OM,連接QA,QP,PM,然后根據(jù)題干中條件和輔助線條件求證 △PQA≌△PMN,得出PQ=PM,再繼續(xù)求證△PQA≌△PMN,得到△QPM為等腰直角三角形,得出角PQM=45°,再根據(jù)等量代換,求∠NMP、∠OMB、∠QMP之和即可.
(3)要求證,只需證兩邊所在三角形全等即可,即求證△EFH≌△FBG.根據(jù)點(diǎn)的坐標(biāo)特征和等量代換關(guān)系得出,然后求證,根據(jù)三角形全等的性質(zhì)得到和等量代換得到∠FBG=∠EHF,最后根據(jù)三角形全等的判定方法證明△EFH≌△FBG即可解決.
(1)解:∵
∴
即
∴
解得:
∵,
∴A點(diǎn)坐標(biāo)為(-1,1),B點(diǎn)坐標(biāo)為(1,-1)
(2)證明:
如圖,在x軸負(fù)半軸取點(diǎn)Q,OQ=OM,連接QA,QP,PM,
∵AO=BO,∠AOQ=∠BOM
∴△AOQ≌△BOM(SAS)
∠AQO=∠BMO
∴AQ=BM=MN,
又∵OQ=OM,PO⊥QM
∴PQ=PM,
又∵PA=PN
∴△PQA≌△PMN(SSS)
∴∠QPA=∠MPN,∠PQA=∠PMN
∴∠QPA+∠APM=∠MPN+∠APM=90°
∴△QPM為等腰直角三角形
∴∠PMQ=∠PQM=45°,
∵∠PQA=∠NMP,∠AQO=∠OMB
∴∠PQA+∠AQO=∠NMP+∠OMB=∠PQM=45°
∴∠NMP+∠OMB+∠QMP=90°.
∴BM⊥MN
(3)證明:過(guò)B作BH⊥AF交AF延長(zhǎng)線于H,連接EH,如圖:
∵點(diǎn)A的坐標(biāo)為(-1,1),點(diǎn)B的坐標(biāo)為(1,-1)
∴H點(diǎn)的坐標(biāo)為(-1,-1)
∴
又∵CG=1,
∵AC⊥y軸,AD⊥x軸,BH⊥AH
∴∠FHB=∠EAH,
∠EHA=∠FBH
∵AE=BG,AC=CG,
∴CE=CB
∴∠CEB=∠CBE
又∵∠HBE=∠CEB
∴∠HBE=∠EBC
∴∠FBG=∠EHF
在△EFH和△FBG中
∴△EFH≌△FBG
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】順次連接平面上四點(diǎn)得到一個(gè)四邊形,從①,②,③,④四個(gè)條件中任取其中兩個(gè),可以得出“四邊形是平行四邊形”,這一結(jié)論的情況共有( )
A.2種B.3種C.4種D.5種
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)橫斷面為拋物線形狀的拱橋,當(dāng)水面寬米時(shí),拱頂(拱橋洞的最高點(diǎn))離水面,水面上升時(shí),水面的寬度為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖所示,在中,,,,點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以的速度移動(dòng),點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以的速度移動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)后,另外一點(diǎn)也隨之停止運(yùn)動(dòng).
如果、分別從、同時(shí)出發(fā),那么幾秒后,的面積等于?
在中,的面積能否等于?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,四邊形ABCD的頂點(diǎn)A在的內(nèi)部,B,C兩點(diǎn)在OM上(C在B,O之間),且,點(diǎn)D在ON上,若當(dāng)CD⊥OM時(shí),四邊形ABCD的周長(zhǎng)最小,則此時(shí)AD的長(zhǎng)度是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P為△ABC三邊垂直平分線的交點(diǎn),∠PAC=20°,∠PCB=30°,
(1)求∠PAB的度數(shù);
(2)直接寫(xiě)出∠APB與∠ACB的數(shù)量關(guān)系 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC,∠ABC=∠ACB=45°,在△ABC外側(cè)作∠ACM,使得∠ACM=∠ABC,點(diǎn)D是射線CB上的動(dòng)點(diǎn),過(guò)點(diǎn)D作直線CM的垂線,垂足為E,交直線AC于F.
(1)當(dāng)點(diǎn)D與點(diǎn)B重合時(shí),如圖1所示,線段DF與EC的數(shù)量關(guān)系是 ;
(2)當(dāng)點(diǎn)D運(yùn)動(dòng)到CB延長(zhǎng)線上某一點(diǎn)時(shí),線段DF和EC是否保持上述數(shù)量關(guān)系?請(qǐng)?jiān)趫D2中畫(huà)出圖形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的方程有兩個(gè)正整數(shù)根(是正整數(shù)).的三邊、、滿足,,.
求:
的值;
的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,x軸表示一條東西方向的道路,y軸表示一條南北方向的道路,小麗和小明分別從十字路口O點(diǎn)處同時(shí)出發(fā),小麗沿著x軸以4千米時(shí)的速度由西向東前進(jìn),小明沿著y軸以5千米/時(shí)的速度由南向北前進(jìn).有一顆百年古樹(shù)位于圖中的P點(diǎn)處,古樹(shù)與x軸、y軸的距離分別是3千米和2千米.
問(wèn):(1)離開(kāi)路口后經(jīng)過(guò)多少時(shí)間,兩人與這棵古樹(shù)的距離恰好相等?
(2)離開(kāi)路口經(jīng)過(guò)多少時(shí)間,兩人與這顆古樹(shù)所處的位置恰好在一條直線上?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com