【題目】一根竹竿長(zhǎng)米,先像靠墻放置,與水平夾角為,為了減少占地空間,現(xiàn)將竹竿像放置,與水平夾角為,則竹竿讓出多少水平空間(

A. B. C. D.

【答案】A

【解析】

先在RtABE中,由∠BAE=45°可判斷ABE為等腰直角三角形,則AE== ,再在RtA′B′E中,利用余弦的定義可計(jì)算出A′E=acos60°=a,然后計(jì)算AA′=AE-A′E即可.

Rt△ABE,∵∠BAE=45°,

∴△ABE為等腰直角三角形,

∴AE==

Rt△A′B′E,∵cos∠B′A′E=

∠B′A′E=60°,A′B′=a,

∴A′E=a·cos60°=a,

∴AA′=AEA′E=-a=a ().

即竹竿讓出a米的水平空間

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)、問(wèn)題:如圖1,在四邊形ABCD中,點(diǎn)PAB上一點(diǎn),∠DPC=A=B=90°.求證:AD·BC=AP·BP

(2)、探究:如圖2,在四邊形ABCD中,點(diǎn)PAB上一點(diǎn),當(dāng)∠DPC=A=B=θ時(shí),上述結(jié)論是否依然成立?說(shuō)明理由.

(3)、應(yīng)用:請(qǐng)利用(1)(2)獲得的經(jīng)驗(yàn)解決問(wèn)題:

如圖3,在ABD中,AB=6,AD=BD=5.點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,由點(diǎn)A 出發(fā),沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿足∠DPC=A.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)DC的長(zhǎng)與ABD底邊上的高相等時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,EF切⊙O于點(diǎn)D,過(guò)點(diǎn)B作BH⊥EF于點(diǎn)H,交⊙O于點(diǎn)C,連接BD.

(1)求證:BD平分∠ABH;

(2)如果AB=12,BC=8,求圓心O到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)問(wèn)題:如圖中,,,邊上一點(diǎn)(不與點(diǎn),重合),連接,過(guò)點(diǎn),并滿足,連接.則線段和線段的數(shù)量關(guān)系是_______,位置關(guān)系是_______

2)探索:如圖,當(dāng)點(diǎn)為邊上一點(diǎn)(不與點(diǎn)重合),均為等腰直角三角形,,,.試探索線段,之間滿足的等量關(guān)系,并證明你的結(jié)論;

3)拓展:如圖,在四邊形中,,若,請(qǐng)直接寫出線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹(shù)DE的高度.他們?cè)谶@棵樹(shù)正前方一座樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹(shù)頂端D的仰角為30°,朝著這棵樹(shù)的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹(shù)頂端D的仰角為60°.已知A點(diǎn)的高度AB2米,臺(tái)階AC的坡度為1(即ABBC=1),且B、CE三點(diǎn)在同一條直線上.請(qǐng)根據(jù)以上條件求出樹(shù)DE的高度(測(cè)傾器的高度忽略不計(jì)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(1,1),B (4,2),C(3,4)

1)畫出ABC關(guān)于y軸對(duì)稱的A1B1C1(要求:AA1BB1,CC1相對(duì)應(yīng));

2)通過(guò)畫圖,在x軸上確定點(diǎn)Q,使得QAQB之和最小,畫出QAQB,并直接寫出點(diǎn)Q的坐標(biāo).點(diǎn)Q的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知線段AB、CD相交于點(diǎn)O,連接AC、BD,則我們把形如這樣的圖形稱為“8字型”.

(1)求證:∠A+∠C=∠B+D;

(2)如圖2,若∠CAB和∠BDC的平分線APDP相交于點(diǎn)P,且與CD、AB分別相交于點(diǎn)M、N.

以線段AC為邊的“8字型”有   個(gè),以點(diǎn)O為交點(diǎn)的“8字型”有   個(gè);

若∠B=100°,∠C=120°,求∠P的度數(shù);

若角平分線中角的關(guān)系改為“∠CAP=∠CAB,∠CDP=∠CDB”,試探究∠P∠B、∠C之間存在的數(shù)量關(guān)系,并證明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果基地計(jì)劃裝運(yùn)甲、乙、丙三種水果到外地銷售(每輛汽車規(guī)定滿載,并且只裝一種水果).如表為裝運(yùn)甲、乙、丙三種水果的重量及利潤(rùn).

每輛汽車能裝的數(shù)量(噸)

4

2

3

每噸水果可獲利潤(rùn)(千元)

5

7

4

(1)用8輛汽車裝運(yùn)乙、丙兩種水果共22噸到A地銷售,問(wèn)裝運(yùn)乙、丙兩種水果的汽車各多少輛?

(2)水果基地計(jì)劃用20輛汽車裝運(yùn)甲、乙、丙三種水果共72噸到B地銷售(每種水果不少于一車),假設(shè)裝運(yùn)甲水果的汽車為m輛,則裝運(yùn)乙、丙兩種水果的汽車各多少輛?(結(jié)果用m表示)

(3)在(2)問(wèn)的基礎(chǔ)上,如何安排裝運(yùn)可使水果基地獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,把直角三角形紙片沿過(guò)頂點(diǎn)B的直線(BECAE)折疊,直角頂點(diǎn)C落在斜邊AB上,如果折疊后得等腰△EBA,那么結(jié)論中:①∠A=30°;②點(diǎn)CAB的中點(diǎn)重合;③點(diǎn)EAB的距離等于CE的長(zhǎng),正確的個(gè)數(shù)是(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步練習(xí)冊(cè)答案