【題目】如圖,矩形的頂點和對稱中心在反比例函數(shù)上,若矩形的面積為8,則的值為( )

A. 4B. C. D. 8

【答案】A

【解析】

設(shè)A點的坐標(biāo)為(m,n)則根據(jù)矩形的性質(zhì)得出矩形中心的縱坐標(biāo)為,根據(jù)中心在反比例函數(shù)y=上,求出中心的橫坐標(biāo)為,進(jìn)而可得出BC的長度,根據(jù)矩形ABCD的面積即可求得.

如圖,延長DAy軸于點E

∵四邊形ABCD是矩形,
設(shè)A點的坐標(biāo)為(mn)則根據(jù)矩形的性質(zhì)得出矩形中心的縱坐標(biāo)為,
∵矩形ABCD的中心都在反比例函數(shù)y=上,
x=,
∴矩形ABCD中心的坐標(biāo)為(,
BC=2=-2m
S矩形ABCD=8,
∴(-2mn=8
4k-2mn=8
∵點Am,n)在y=上,
mn=k,
4k-2k=8
解得:k=4
故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,點DE在線段BC上,且BECD,連接AD、AE,過點DDFAE,垂足為H,交AC于點F,過點EEGAC,垂足為G

1)若DH4,AD5HF1,求AF的長;

2)若∠BAC90°,求證:AF2CG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,,,斜邊,將繞點順時針旋轉(zhuǎn),如圖1,連接

(1)填空:  ;

(2)如圖1,連接,作,垂足為,求的長度;

(3)如圖2,點,同時從點出發(fā),在邊上運動,沿路徑勻速運動,沿路徑勻速運動,當(dāng)兩點相遇時運動停止,已知點的運動速度為1.5單位秒,點的運動速度為1單位秒,設(shè)運動時間為秒,的面積為,求當(dāng)為何值時取得最大值?最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yx2bxcx軸交于點AB,AB2,與y軸交于點C,對稱軸為直線x2

1)求拋物線的函數(shù)表達(dá)式;

2)根據(jù)圖像,直接寫出不等式x2bxc0的解集:

3)設(shè)D為拋物線上一點,E為對稱軸上一點,若以點A,B,D,E為頂點的四邊形是菱形,則點D的坐標(biāo)為:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三張卡片的正面分別寫有數(shù)字25,5,卡片除數(shù)字外完全相同,將它們洗勻后,背面朝上放置在桌面上.

1)從中任意抽取一張卡片,該卡片上數(shù)字是5的概率為   ;

2)學(xué)校將組織部分學(xué)生參加夏令營活動,九年級(1)班只有一個名額,小剛和小芳都想去,于是利用上述三張卡片做游戲決定誰去,游戲規(guī)則是:從中任意抽取一張卡片,記下數(shù)字放回,洗勻后再任意抽取一張,將抽取的兩張卡片上的數(shù)字相加,若和等于7,小鋼去;若和等于10,小芳去;和是其他數(shù),游戲重新開始.你認(rèn)為游戲?qū)﹄p方公平嗎?請用畫樹狀圖或列表的方法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,有一個由六個邊長為1的正方形組成的圖案,其中點A,B的坐標(biāo)分別為(3,5)(6,1).若過原點的直線l將這個圖案分成面積相等的兩部分,則直線l的函數(shù)解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 拋物線軸交于點A(-1,0),頂點坐標(biāo)(1,n)與軸的交點在(0,2),(0,3)之間(包 含端點),則下列結(jié)論:①;②;③對于任意實數(shù)m,總成立;④關(guān)于的方程有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為  

A. 1 個 B. 2 個 C. 3 個 D. 4 個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)用配方法解方程:x2-2x-2=0;(2)已知關(guān)于x的方程(m-2x2+m-2x-1=0有兩個相等的實數(shù)根,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交AF于點G,連接DG.

(1)求證:四邊形EFDG是菱形;

(2)求證:EG2=GF×AF;

(3)若,折痕AF=5cm,則矩形ABCD的周長為 .

查看答案和解析>>

同步練習(xí)冊答案