【題目】(1)用配方法解方程:x2-2x-2=0;(2)已知關于x的方程(m-2)x2+(m-2)x-1=0有兩個相等的實數(shù)根,求m的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在直角坐標系中,一次函數(shù)的圖象與軸交于點,與一次函數(shù)的圖象交于點.
(1)求的值及的表達式;
(2)直線與軸交于點,直線與y軸交于點,求四邊形的面積;
(3)如圖2,已知矩形,,,,矩形的邊在軸上平移,若矩形與直線或有交點,直接寫出的取值范圍,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中, , ,將矩形沿直線EF折疊.使得點A恰好落在BC邊上的點G處,且點E、F分別在邊AB、AD上(含端點),連接CF.
(1)當 時,求AE的長;
(2)當AF取得最小值時,求折痕EF的長;
(3)連接CF,當 是以CG為底的等腰三角形時,直接寫出BG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題)如圖①,在a×b×c(長×寬×高,其中a,b,c為正整數(shù))個小立方塊組成的長方體中,長方體的個數(shù)是多少?
(探究)
探究一:
(1)如圖②,在2×1×1個小立方塊組成的長方體中,棱AB上共有1+2==3條線段,棱AC,AD上分別只有1條線段,則圖中長方體的個數(shù)為3×1×1=3.
(2)如圖③,在3×1×1個小立方塊組成的長方體中,棱AB上共有1+2+3==6條線段,棱AC,AD上分別只有1條線段,則圖中長方體的個數(shù)為6×1×1=6.
(3)依此類推,如圖④,在a×1×1個小立方塊組成的長方體中,棱AB上共有1+2+…+a=線段,棱AC,AD上分別只有1條線段,則圖中長方體的個數(shù)為______.
探究二:
(4)如圖⑤,在a×2×1個小立方塊組成的長方體中,棱AB上有條線段,棱AC上有1+2==3條線段,棱AD上只有1條線段,則圖中長方體的個數(shù)為×3×1=.
(5)如圖⑥,在a×3×1個小立方塊組成的長方體中,棱AB上有條線段,棱AC上有1+2+3==6條線段,棱AD上只有1條線段,則圖中長方體的個數(shù)為______.
(6)依此類推,如圖⑦,在a×b×1個小立方塊組成的長方體中,長方體的個數(shù)為______.
探究三:
(7)如圖⑧,在以a×b×2個小立方塊組成的長方體中,棱AB上有條線段,棱AC上有
條線段,棱AD上有1+2==3條線段,則圖中長方體的個數(shù)為××3=.
(8)如圖⑨,在a×b×3個小立方塊組成的長方體中,棱AB上有條線段,棱AC上有條線段,棱AD上有1+2+3==6條線段,則圖中長方體的個數(shù)為______.
(結(jié)論)如圖①,在a×b×c個小立方塊組成的長方體中,長方體的個數(shù)為______.
(應用)在2×3×4個小立方塊組成的長方體中,長方體的個數(shù)為______.
(拓展)
如果在若干個小立方塊組成的正方體中共有1000個長方體,那么組成這個正方體的小立方塊的個數(shù)是多少?請通過計算說明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過點,且對稱軸為直線.有四個結(jié)論:①;②;③;④若,則時的函數(shù)值小于時的函數(shù)值.其中正確的結(jié)論是( )
A. ①②B. ②③C. ①④D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).以A為頂點的拋物線過點C,且對稱軸交x軸于點B,連結(jié)EC,AC,點P、Q為動點,設運動時間為t秒。
(1)直接寫出A點坐標,并求出該拋物線的解析式;
(2)在圖1中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動,當t為何值時,為直角三角形?
(3)在圖2中,若點P在對稱軸上從點B開始向點A以2個單位/秒的速度運動,過點P作,交AC于點F,過點F作于點G,交拋物線于點Q,連結(jié)AQ,CQ.當t為何值時,的面積最大?最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com