如圖,在等腰梯形ABCD中,∠DCB=60°,AD∥BC,且AD=DC. E,F(xiàn)分別在AD,DC的延長線上,且DE=CF、AF,BE交于點(diǎn)P,且分別交DC,BC于點(diǎn)H,G.
(1)求證:AF=BE;
(2)請你猜測∠BPF的度數(shù),并證明你的結(jié)論;
(3)延長BA,CD相交于M,若AD=24,BP=27,試求三角形MBP和三角形MBH的面積比.

【答案】分析:(1)根據(jù)SAS判定△BAE≌△ADF,由全等三角形的性質(zhì)得出BE=AF.
(2)由△BAE≌△ADF得出∠ABE=∠DAF,進(jìn)而得到∠BPF=∠BAE,再根據(jù)AD與BC平行,得出∠BPF的度數(shù).
(3)延長BA,CD交于點(diǎn)M,首先證明△ABP∽△HBM,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,求出HB的長度,再根據(jù)同高的三角形的面積之比等于其對(duì)應(yīng)的底邊長之比得出三角形MBP和三角形MBH的面積比.
解答:解:(1)∵AB=CD,AD=DC,
∴BA=AD,∠BAE=∠ADF,
∵DE=CF,
∴AE=DF,
∴△BAE≌△ADF(SAS).
∴BE=AF.(3分)

(2)猜測∠BPF=120°.(1分)
∵由(1)△BAE≌△ADF,
∴∠ABE=∠DAF.
∴∠BPF=∠ABE+∠BAP=∠DAF+∠BAP=∠BAE.
而AD∥BC,∠DCB=∠ABC=60°,
∴∠BPF=120°.(3分)

(3)延長BA,CD交于點(diǎn)M,則△MBC為正三角形.
∵∠BPF=120°,
∴∠APB=∠M=60°.
而∠ABP=∠HBM,
∴△ABP∽△HBM.
,即

則S△MBP:S△MBH=BP:BH=81:128.(5分)
點(diǎn)評(píng):本題考查了全等三角形的判定及其性質(zhì)、相似三角形的判定及其性質(zhì)、以及同高的三角形的面積之比等知識(shí).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿AB向終點(diǎn)B運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿CD、DA向終點(diǎn)A運(yùn)動(dòng)(P、Q兩點(diǎn)中,有一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),所有運(yùn)動(dòng)即終止).設(shè)P、Q同時(shí)出發(fā)并運(yùn)動(dòng)了t秒.
(1)當(dāng)PQ將梯形ABCD分成兩個(gè)直角梯形時(shí),求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點(diǎn),求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點(diǎn)E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點(diǎn)E,且EC=3,則梯形ABCD的周長是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考必備’04全國中考試題集錦·數(shù)學(xué) 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點(diǎn)P從A點(diǎn)出發(fā)沿AD邊向點(diǎn)D移動(dòng),點(diǎn)Q自A點(diǎn)出發(fā)沿A→B→C的路線移動(dòng),且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.

  

(1)分別求出當(dāng)點(diǎn)Q位于AB、BC上時(shí),S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時(shí),x的值是多少?

(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點(diǎn),那么OE與OF的長度有什么關(guān)系?借助備用圖說明理由;并進(jìn)一步探究:對(duì)任何一個(gè)梯形,當(dāng)一直線l經(jīng)過梯形中位線的中點(diǎn)并滿足什么條件時(shí),一定能平分梯形的面積?(只要求說出條件,不需要證明)

查看答案和解析>>

同步練習(xí)冊答案