【題目】在△ABC中,∠B=45°,∠C=30°,點D是BC上一點,連接AD,過點A作AG⊥AD,在AG上取點F,連接DF.延長DA至E,使AE=AF,連接EG,DG,且GE=DF.
(1)若AB=2 ,求BC的長;
(2)如圖1,當點G在AC上時,求證:BD= CG;
(3)如圖2,當點G在AC的垂直平分線上時,直接寫出 的值.
【答案】
(1)
解:如圖1中,過點A作AH⊥BC于H.
∴∠AHB=∠AHC=90°,
在RT△AHB中,∵AB=2 ,∠B=45°,
∴BH=ABcosB=2 × =2,
AH=ABsinB=2,
在RT△AHC中,∵∠C=30°,
∴AC=2AH=4,CH=ACcosC=2 ,
∴BC=BH+CH=2+2
(2)
證明:如圖1中,
過點A作AP⊥AB交BC于P,連接PG,
∵AG⊥AD,∴∠DAF=∠EAC=90°,
在△DAF和△GAE中,
,
∴△DAF≌△GAE,
∴AD=AG,
∴∠BAP=90°=∠DAG,
∴∠BAD=∠PAG,
∵∠B=∠APB=45°,
∴AB=AP,
在△ABD和△APG中,
,
∴△ABD≌△APG,
∴BD=PG,∠B=∠APG=45°,
∴∠GPB=∠GPC=90°,
∵∠C=30°,
∴PG= GC,
∴BD= CG.
(3)
解:如圖2中,
作AH⊥BC于H,AC的垂直平分線交AC于P,交BC于M.則AP=PC,
在RT△AHC中,∵∠ACH=30°,
∴AC=2AH,
∴AH=AP,
在RT△AHD和RT△APG中,
,
∴△AHD≌△APG,
∴∠DAH=∠GAP,
∵GM⊥AC,PA=PC,
∴MA=MC,
∴∠MAC=∠MCA=∠MAH=30°,
∴∠DAM=∠GAM=45°,
∴∠DAH=∠GAP=15°,
∴∠BAD=∠BAH﹣∠DAH=30°,
作DK⊥AB于K,設(shè)BK=DK=a,則AK= a,AD=2a,
∴ = = ,
∵AG=CG=AD,
∴ =
【解析】(1)如圖1中,過點A作AH⊥BC于H,分別在RT△ABH,RT△AHC中求出BH、HC即可.(2)如圖1中,過點A作AP⊥AB交BC于P,連接PG,由△ABD≌△APG推出BD=PG,再利用30度角性質(zhì)即可解決問題.(3)如圖2中,作AH⊥BC于H,AC的垂直平分線交AC于P,交BC于M.則AP=PC,作DK⊥AB于K,設(shè)BK=DK=a,則AK= a,AD=2a,只要證明∠BAD=30°即可解決問題.本題考查相似三角形綜合題、全等三角形的判定和性質(zhì)、直角三角形30度角性質(zhì)、線段垂直平分線性質(zhì)等知識,解題的關(guān)鍵是添加輔助線構(gòu)造全等三角形,學會設(shè)參數(shù)解決問題,屬于中考壓軸題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,AB≠CD,BD=AC.
(1)求證:AD=BC;
(2)若E、F、G、H分別是AB、CD、AC、BD的中點,求證:線段EF與線段GH互相垂直平分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,﹣3),動點P在拋物線上.
(1)b= , c= , 點B的坐標為;(直接填寫結(jié)果)
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;
(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(一), 為一條拉直的細線,A、B兩點在 上,且 : =1:3, : =3:5.若先固定B點,將 折向 ,使得 重迭在 上,如圖(二),再從圖(二) 的A點及與A點重迭處一起剪開,使得細線分成三段,則此三段細線由小到大的長度比為何?(。
A.1:1:1
B.1:1:2
C.1:2:2
D.1:2:5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點,C、D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,D點在拋物線y= x2+bx+c上,且OB=OC,AB=5,tan∠ACB= ,M是拋物線與y軸的交點.
(1)求直線AC和拋物線的解析式;
(2)動點P從A到D,同時動點Q從C到A都以每秒1個單位的速度運動.問:當P運動到何處時,△APQ是直角三角形?
(3)在(2)中當P運動到某處時,四邊形PDCQ的面積最小,求此時△CMQ的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com